Organic Letters
Letter
Three Nenitzescu indole syntheses18 were performed to
illustrate how β-enamino thioesters can be used (Figure 4).19
All three reactions did not perturb the thioester functionality,
even when this involved a more reactive phenylthiolate leaving
group, i.e. for indole 3b. Formation of the regioisomers shown
was confirmed via NOESY experiments.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and spectroscopic data for com-
pounds 1−6. This material is available free of charge via the
■
S
An isolable intermediate azabenzotriazole ether was formed
when 1,3-cyclohexanedione was allowed to react under the
conditions used under typical coupling conditions (Figure 5). It
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support for this work was provided by The National
Institutes of Health (GM087981) and The Robert A. Welch
Foundation (A-1121).
DEDICATION
■
In honor of Alan R. Katritzky, 18 Aug. 1928−10 Feb. 2014.
REFERENCES
■
(1) (a) Jia, Z.; Nagano, T.; Li, X.; Chan, A. S. C. Eur. J. Org. Chem.
2013, 858. (b) Neumann, J. J.; Rakshit, S.; Droege, T.; Wuertz, S.;
Glorius, F. Chem.Eur. J. 2011, 7298. (c) Nguyen, H. H.; Kurth, M. J.
Org. Lett. 2013, 362. (d) Kramer, S.; Dooleweerdt, K.; Lindhardt, A.
T.; Rottlander, M.; Skrydstrup, T. Org. Lett. 2009, 4208.
(2) Zheng, Y.; Li, X.; Ren, C.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J.
Org. Chem. 2012, 10353.
Figure 5. Intermediate formation in HOAt-mediated reactions.
seems probable that this intermediate is more stable than the
corresponding one in the thioester reactions. If similar
intermediates are formed throughout, this reaction indicates a
two-step conjugate addition−elimination process is operative.
This would also explain why HOAt is superior to HOBt in
these transformations: because the aza-derivative can “lever”
proton transfer in the amine addition step as indicated in
transition state E.
Finally, Figure 6 illustrates how the conditions developed for
formation of β-enamino amides were applied in reactions
typical of those used to make the interface mimics B−D. Good
yields were obtained, and the near-neutral conditions indicate
there is likely to be a broad substrate scope.
(3) Suri, M.; Jousseaume, T.; Neumann, J. J.; Glorius, F. Green Chem.
2012, 2193.
(4) Yamamoto, S.-i.; Okamoto, K.; Murakoso, M.; Kuninobu, Y.;
Takai, K. Org. Lett. 2012, 3182.
(5) Noole, A.; Borissova, M.; Lopp, M.; Kanger, T. J. Org. Chem.
2011, 1538.
(6) Chun, Y. S.; Xuan, Z.; Kim, J. H.; Lee, S.-g. Org. Lett. 2013, 3162.
(7) (a) Meng, L.; Wu, K.; Liu, C.; Lei, A. Chem. Commun. 2013,
5853. (b) Ke, J.; He, C.; Liu, H.; Li, M.; Lei, A. Chem. Commun. 2013,
7549. (c) Toh, K. K.; Wang, Y.-F.; Ng, E. P. J.; Chiba, S. J. Am. Chem.
Soc. 2011, 13942. (d) Zhao, M.; Wang, F.; Li, X. Org. Lett. 2012, 1412.
(8) Toh, K. K.; Sanjaya, S.; Sahnoun, S.; Chong, S. Y.; Chiba, S. Org.
Lett. 2012, 2290.
(9) (a) Zhang, Z.-H.; Yin, L.; Wang, Y.-M. Adv. Synth. Catal. 2006,
184. (b) Sridharan, V.; Avendano, C.; Menendez, J. C. Synlett 2007,
881.
(10) (a) Raghuraman, A.; Ko, E.; Perez, L. M.; Ioerger, T. R.;
Burgess, K. J. Am. Chem. Soc. 2011, 12350. (b) Raghuraman, A.; Xin,
D.; Perez, L. M.; Burgess, K. J. Org. Chem. 2013, 4823. (c) Ko, E.;
Raghuraman, A.; Perez, L. M.; Ioerger, T. R.; Burgess, K. J. Am. Chem.
Soc. 2013, 167.
(11) Fedoseyenko, D.; Raghuraman, A.; Ko, E.; Burgess, K. Org.
Biomol. Chem. 2012, 921.
(12) Xin, D.; Perez, L. M.; Ioerger, T. R.; Burgess, K. Angew. Chem.,
Int. Ed. 2014, DOI: 10.1002/anie.201400927.
(13) Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D.
Tetrahedron Lett. 1989, 1927.
Figure 6. Application of the featured conditions for syntheses of
(14) Carpino, L. A. J. Am. Chem. Soc. 1993, 4397.
(15) Coste, J.; Le-Nguyen, D.; Castro, B. Tetrahedron Lett. 1990, 205.
(16) Vitale, P.; Di Nunno, L.; Scilimati, A. Synthesis 2010, 3195.
(17) Roh, E. J.; Keller, J. M.; Olah, Z.; Iadarola, M. J.; Jacobson, K. A.
Bioorg. Med. Chem. 2008, 9349.
(18) (a) Allen, G. R. Org. React. 2011, 337. (b) Ketcha, D. M.;
Wilson, L. J.; Portlock, D. E. Tetrahedron Lett. 2000, 6253. (c) Patrick,
J. B.; Saunders, E. K. Tetrahedron Lett. 1979, 4009.
(19) Suryavanshi, P. A.; Sridharan, V.; Menendez, J. C. Org. Biomol.
Chem. 2010, 3426.
interface mimic fragments.
In summary, β-enamino derivatives can be formed via
carefully buffered conditions featuring activation agents such as
EDC·HCl and PyBOP. These conditions are sufficiently mild
to facilitate synthesis of a wide range of examples, including
relatively delicate synthons like β-enamino thioesters.
2110
dx.doi.org/10.1021/ol5005643 | Org. Lett. 2014, 16, 2108−2110