10.1002/adsc.202000337
Advanced Synthesis & Catalysis
Experimental Section
M. Jackson, H. Wallick, A. K. Miller, F. J. Wolf, T. W.
Miller, L. Chaiet, F. M. Kahan, E. L. Foltz, H. B.
Woodruff, J. M. Mata, S. Hernandez, S. Mochales,
Science 1969, 166, 122-123; d) Privileged Chiral
Ligands and Catalysts, ed. Q.-L. Zhou, Wiley-VCH,
Weinheim, 2011; e) C. Queffélec, M. Petit, P. Janvier,
D. A. Knight, B. Bujoli, Chem. Rev. 2012, 112, 3777-
3807; f) M. Marinozzi, F. Pertusati, M. Serpi, Chem.
Rev. 2016, 116, 13991-14055.
General
Procedure
for
the
Synthesis
of
Phosphinonyloxindoles 3:
In a 38 mL sealed tube, the mixture of 1 (0.20 mmol), 2
(0.40 mmol), Pd(OAc)2 (4.5 mg, 0.02 mmol), DPE-Phos
(10.8 mg, 0.02 mmol), Na2CO3 (42.4 mg, 0.40 mmol) were
dissolved in anhydrous MeCN (2 mL). Then, N2 was used to
purge the tube three times, followed by PTEF cap sealing.
The reaction mixture was heated to 100 °C for 12 h. After
the reaction, it was cooled down to room temperature. We
then eliminated the solvents at reduced pressure, and it was
followed by residue purification by column chromatography
(CC) on silica gel (EtOAc/Petroleum Ether), giving rise to
products 3.
[2] For selected reviews, see: a) S. Van der Jeught, C.
V.Stevens, Chem. Rev. 2009, 109, 2672-2702; b) I.
Wauters, W. Debrouwer, C. V. Stevens, Beilstein J. Org.
Chem. 2014, 10, 1064-1096; c) A. L. Schwan, Chem.
Soc. Rev. 2004, 33, 218-224; d) F. M. J. Tappe, V. T.
Trepohl, M. Oestreich, Synthesis 2010, 2010, 3037-
3062. e) E. Jablonkai, G. Keglevich, Org. Prep. Proced.
Int. 2014, 46, 281-316; For selected examples, see: f) T.
Hirao, T. Masunaga, Y. Ohshiro, T. Agawa, Synthesis
1981, 1, 56-57; g) H.-J. Cristau, A. Hervé, F. Loiseau,
D. Virieux, Synthesis 2003, 14, 2216-2220; h) L. J.
Gooßen, M. K. Dezfuli, Synlett 2005, 3, 445-448; i) Y.
Belabassi, S. Alzghari, J.-L. Montchamp, J. Organomet.
Chem. 2008, 693, 3171-3178; j) A. Bessmertnykh, C.
M. Douaihy, S. Muniappan, R. Guilard, Synthesis 2008,
10, 1575-1579; k) M. Kalek, A. Ziadi, J. Stawinski, Org.
Lett. 2008, 10, 4637-4640; l) O. Berger, C. Petit, E. L.
Deal, J.-L. Montchamp, Adv. Synth. Catal. 2013, 355,
1361-1373; m) W. C. Fu, C. M. So, F. Y. Kwong, Org.
Lett. 2015, 17, 5906-5909; n) T. Hirao, T. Masunaga, Y.
Ohshiro, T. Agawa, Tetrahedron Lett. 1980, 21, 3595-
3598; o) C. Liu, M. Szostak, Angew. Chem. Int. Ed.
2017, 56, 12718-12722; p) R. Beaud, R. J. Phipps, M.
J. Gaunt, J. Am. Chem. Soc. 2016, 138, 13183-13186;
q) C. Liu, C.-L. Ji, T. Zhou, X. Hong, M. Szostak,
Org. Lett. 2019, 21, 9256-9261.
General
Procedure
for
the
Synthesis
of
Phosphinonyloxindoles 5:
In a 38 mL sealed tube, the mixture of 1 (0.20 mmol), 4
(0.20 mmol), Pd(OAc)2 (4.5 mg, 0.02 mmol), DPE-Phos
(10.8 mg, 0.02 mmol), Na2CO3 (42.4 mg, 0.40 mmol) were
dissolved in anhydrous MeCN (2 mL). Then, N2 was used to
purge the tube three times, followed by PTEF cap sealing.
The reaction mixture was heated to 100 °C for 12 h. After
the reaction, it was cooled down to room temperature. We
then eliminated the solvents at reduced pressure, and it was
followed by residue purification by column chromatography
(CC) on silica gel (EtOAc/Petroleum Ether), giving rise to
products 5.
General Procedure for the Synthesis of Phosphorylated
Bicyclic Lactams 7:
In a 38 mL sealed tube, the mixture of 6 (0.20 mmol), 2a
(0.40 mmol), Pd(OAc)2 (4.5 mg, 0.02 mmol), DPE-Phos
(10.8 mg, 0.02 mmol), Na2CO3 (42.4 mg, 0.40 mmol) were
dissolved in anhydrous MeCN (2 mL). The subsequent [3] a) A. Michaelis, T. Becker, Ber. Dtsch. Chem. Ges. 1897,
procedures were the same as those for the synthesis of
phosphinonyloxindoles, giving rise to products 7.
30, 1003-1009; b) A. K. Bhattacharya, G. Thyagarajan,
Chem. Rev. 1981, 81, 415-430.
[4] For reviews, see: a) V. Quint, L. Noël-Duchesneau, E.
Lagadic, F. Morlet-Savary, J. Lalevée, A. -C. Gaumont,
S. Lakhdar, Synthesis 2017, 15, 3444-3452; b) D. Leca,
L. Fensterbank, E. Lacôte, M. Malacria, Chem. Soc. Rev.
2005, 34, 858-865; c) Y. Gao, G. Tang, Y. Zhao, Chin.
J. Org. Chem. 2018, 38, 62-74; d) X.-Q. Pan, J.-P. Zou,
W.-B. Yi, W. Zhang, Tetrahedron 2015, 71, 7481-7529.
For selected examples, see: e) C. Chen, Y. Bao, J. Zhao,
B. Zhu, Chem. Commun. 2019, 55, 14697-14700; f) G.
Zhang, L. Fu, J. Chen, J. Zou, G. Liu, Org. Lett. 2019,
21, 5015-5020; g) Y.-M. Li, M. Sun, H.-L. Wang, Q.-P.
Tian, S.-D. Yang, Angew. Chem. Int. Ed. 2013, 52,
3972-3976; h) W. Kong, E. Merino, C. Nevado, Angew.
Chem. Int. Ed. 2014, 53, 5078-5082; i) Y. Zhang, J.
Zhang, B. Hu, M. Ji, S. Ye, G. Zhu, Org. Lett. 2018, 20,
2988-2992; j) J. Q. Buquoi, J. M. Lear, X. Gu, D. A.
Nagib, ACS Catal. 2019, 9, 5330-5335; k) F. Chen, Y.
Xia, R. Lin, Y. Gao, P. Xu, Y. Zhao, Org. Lett. 2019,
21, 579-583; l) B. Lin, S. Shi, R. Lin, Y. Cui, M. Fang,
G. Tang, Y. Zhao, J. Org. Chem. 2018, 83, 6754-6761;
m) C. Shan, F. Chen, J. Pan, Y. Gao, P. Xu, Y. Zhao, J.
Org. Chem. 2017, 82, 11659-11666; n) P. Zhang, J.
For a detailed description of the synthesis of starting
materials and final products, see the Supporting Information.
Acknowledgements
We are grateful to the National Natural Science Foundation of
China (No.: 21901184; 21572160; 21702091); the Science &
Technology Development Fund of Tianjin Education Commission
for Higher Education (No.: 2018KJ159); the Doctoral Program
Foundation of Tianjin Normal University (No.: 043135202-
XB1703); the Program for Innovative Research Team in University
of Tianjin (No.: TD13-5074); Key Research & Development
Project of Shandong Province (No.: 2018GGX109014) for the
financial support.
References
[1] a) G. P. Horsman, D. L. Zechel, Chem. Rev. 2017, 117,
5704-5783; b) The Chemistry of Organophosphorus
Compounds, ed. F. R. Hartley, John Wiley & Sons,
Chichester, 1996, vol. 4; c) D. Hendlin, E. O. Stapley,
5
This article is protected by copyright. All rights reserved.