ChemComm
Communication
Table 3 Substrate scope of asymmetric allylic aminationa
Scheme 2 Proposed transition state.
In summary, we have developed Pd/sulfoxide–phosphine-catalyzed
highly enantioselective allylic etherification and amination with
a wide range of O- and N-nucleophiles. Successful transformations
of the allylic substitution products into the corresponding chiral
dihydrofuran and dihydropyrrole derivatives also highlighted the
synthetic potential of these sulfoxide–phosphine ligands. Further
applications of these ligands to other transition-metal catalyzed
asymmetric reactions for the construction of carbon–heteroatom
bonds are currently in progress in our laboratory.
Entry
5
Product
Yieldb (%)
eec (%)
1
2
3
5a
5b
5c
5d
5e
5f
5g
5h
5i
6a
6b
6c
6d
6e
6f
6g
6h
6i
83
97
83
90
87
72
81
80
80
84
97.1
98.5
97.0
97.3
93.9
98.3
89.9
98.3
95.3
85.1
4
5d
6
7e
8
9
10 f
5j
6j
We are grateful to the National Science Foundation of China
(No. 21272087, 21202053, and 21232003) and the National
Basic Research Program of China (2011CB808603) for support
of this research.
a
Unless otherwise noted, reactions were carried out with 2a (0.2 mmol),
5 (0.6 mmol), [Pd(C3H5)Cl]2 (3 mol%), 1a (6 mol%), Cs2CO3 (0.6 mmol)
b
c
in CH2Cl2 (2.0 mL) at 40 1C for 4 h. Isolated yield. Determined by
chiral HPLC, the absolute configuration was established as R by
comparison with literature data. Reaction was conducted at room
d
e
f
temperature, 12 h. Na2CO3 (0.6 mmol) instead of Cs2CO3, 24 h. 10 h.
Notes and references
an easily removable Boc group, a further Grubbs II catalyst-promoted
ring-closing metathesis afforded dihydropyrrole derivative 8 in 72%
overall yield with 98.3% ee (eqn (2)). Moreover, a direct ring-closing
metathesis reaction of 6g also furnished a good yield of dihydro-
pyrrole 9 with 89.7% ee (eqn (3)).
1 For selected reviews, see: (a) B. M. Trost and C. Lee, in Catalytic
Asymmetric Synthesis, ed. I. Ojima, Wiley-VCH, New York, 2nd edn,
2010, pp. 593–649; (b) G. Helmchen and A. Pfaltz, Acc. Chem. Res.,
2000, 33, 336; (c) L.-X. Dai, T. Tu, S.-L. You, W.-P. Deng and X.-L.
Hou, Acc. Chem. Res., 2003, 36, 659; (d) Z. Lu and S. Ma, Angew.
Chem., Int. Ed., 2008, 47, 258; (e) B. M. Trost, T. Zhang and J. Sieber,
Chem. Sci., 2010, 1, 427; ( f ) B. M. Trost, Org. Process Res. Dev., 2012,
16, 185.
2 (a) J. Buckingham, Dictionary of Natural Products, University Press,
Cambridge, MA, 1994; (b) B. M. Trost and M. L. Crawley, Chem. Rev.,
2003, 103, 2921; (c) A. Lumbroso, M. L. Cooke and B. Breit, Angew.
Chem., Int. Ed., 2013, 52, 1890.
(1)
(2)
(3)
3 (a) B. M. Trost and F. D. Toste, J. Am. Chem. Soc., 1998, 120, 815;
(b) B. M. Trost, H.-C. Tsui and F. D. Toste, J. Am. Chem. Soc., 2000,
122, 3534; (c) B. M. Trost, H. C. Shen, L. Dong and J. P. Surivet, J. Am.
Chem. Soc., 2003, 125, 9276; (d) A. R. Haight, E. J. Stoner, M. J. Peterson
and V. K. Grover, J. Org. Chem., 2003, 68, 8092; (e) C. Fischer,
C. Defieber, T. Suzuki and E. M. Carreira, J. Am. Chem. Soc., 2004,
126, 1628; ( f ) C. Welter, A. Dahnz, B. Brunner, S. Streiff, P. Du¨bon and
G. Helmchen, Org. Lett., 2005, 7, 1239; (g) J.-W. Xing, P. Cao and J. Liao,
Tetrahedron: Asymmetry, 2012, 23, 527; (h) F. Ye, Z.-J. Zheng, L. Li,
K.-F. Yang, C.-G. Xia and L.-W. Xu, Chem. – Eur. J., 2013, 19, 15452;
(i) L. Du, P. Cao and J. Liao, Acta Chim. Sin., 2013, 71, 1239.
4 For selected examples, see: (a) C.-T. Shu and J. F. Hartwig, Angew.
Chem., Int. Ed., 2004, 43, 4794; (b) K. Onitsuka, H. Okuda and
H. Sasai, Angew. Chem., Int. Ed., 2008, 47, 1454; (c) F. L. Lam, T. T.-L.
Au-Yeung, F. Y. Kwong, Z. Zhou, K. Y. Wong and A. S. C. Chan, Angew.
Chem., Int. Ed., 2008, 47, 1280; (d) Z.-Q. Liu and H.-F. Du, Org. Lett.,
2010, 12, 3054; (e) H. He, K.-Y. Ye, Q.-F. Wu, L.-X. Dai and S.-L. You,
Based on Evans’ transition state model on Pd–phosphine/
sulfur complex-catalyzed allylic substitutions,15 a possible tran-
sition state was also proposed to account for the observed
stereochemistry of the products. As shown in Scheme 2, a
nine-membered chelated intermediary palladium complex,
formed by coordination of phosphorus groups and sulfur
groups to the palladium catalyst, would form a M-type allyl
system preferentially formed over its W-type counterpart, due
to the steric interaction between the two phenyl rings of
the phosphine and those of (E)-1,3-diphenylallyl acetate. Thus,
O- and N-nucleophiles would attack the allylic site at the Re-face
to afford the corresponding (R)-products.
`
Adv. Synth. Catal., 2012, 354, 1084; ( f ) J. Mazuela, O. Pamies and
´
`
M. Dieguez, Chem. – Eur. J., 2013, 19, 2416; (g) M. Coll, O. Pamies and
´
M. Dieguez, Org. Lett., 2014, 16, 1892; (h) B.-S. Zeng, X.-Y. Yu, P. W. Siu
and K. A. Scheidt, Chem. Sci., 2014, 5, 2277.
5 (a) S. F. Kirsch and L. E. Overman, J. Am. Chem. Soc., 2005, 127, 2866;
(b) J. S. Cannon, S. F. Kirsch and L. E. Overman, J. Am. Chem. Soc.,
2010, 132, 15185; (c) J.-P. Qu, L. Roßberg and G. Helmchen, J. Am.
Chem. Soc., 2014, 136, 1272.
6 M. Gartner, S. Mader, K. Seehafer and G. Helmchen, J. Am. Chem.
Soc., 2011, 133, 2072.
7 (a) H. Miyabe, A. Matsumura, K. Moriyama and Y. Takemoto, Org.
Lett., 2004, 6, 4631; (b) H. Miyabe, A. Matsumura, K. Yoshida and
9552 | Chem. Commun., 2014, 50, 9550--9553
This journal is ©The Royal Society of Chemistry 2014