3
electron-withdrawing (Cl, CF3) groups were tolerated on the
starting triarylmethanols.
(e) Keita, M.; Vandamme, M.; Mahé, O.; Paquin, J.-F.
Tetrahedron Lett. 2015, 56, 461–464. (f) Desroches, J.;
Champagne, P. A.; Benhassine, Y.; Paquin, J.-F. Org. Biomol.
Chem. 2015, 13, 2243–2246. (g) Keita, M.; Vandamme, M.;
Paquin, J.-F. Synthesis 2015, 47, 3758–3766.
(a) Cochi, A.; Gomez Pardo, D.; Cossy, J. Org. Lett. 2011, 13,
4442–4445. (b) Orliac, A.; Gomez Pardo, D.; Bombrun, A.;
Cossy, J. Org. Lett. 2013, 15, 902–905. (c) Liu, X.; Cheng, S.;
Wang, X.; Xue, W. Synthesis 2013, 45, 3103–3105. (d) Lu, D.-F.;
Liu, G.-S.; Zhu, C.-L.; Yuan. B.; Xu, H. Org. Lett. 2014, 16,
2912–2915. (e) Nonn, M.; Kiss, L.; Haukka, M.; Fustero, S.;
Fülöp, F. Org. Lett. 2015, 17, 1074–1077. (f) Davies, S. G.;
Fletcher, A. M.; Frost, A. B.; Roberts, P. M.; Thomson, J. E. Org.
Lett. 2015, 17, 2254–2257. (g) Brandstätter, M.; Roth, F.;
Luedtke, N. W. J. Org. Chem. 2015, 80, 40–51.
Table 3
Allylation of triarylmethanols with allyltrimethylsilane promoted
by XtalFluor-E.
3.
4.
5.
Sutherland, A.; Vederas, J. C. Chem. Commun. 1999, 1739–1740.
For recent examples where benzylic carbocation intermediates are
involved, see: (a) Onodera, G.; Yamamoto, E.; Tonegawa, S.;
Iezumi, M.; Takeuchi, R. Adv. Synth. Catal. 2011, 353, 2013–
2021; (b) Liébert, C.; Brinks, M. K.; Capacci, A. G.; Fleming, M.
J.; Lautens, M. Org. Lett. 2011, 13, 3000–3003; (c) King, F. D.;
Aliev, A. E.; Caddick, S.; Tocher, D. A. J. Org. Chem. 2013, 78,
10938–10946; (d) Pan, X.;. Li, M.; Gu, Y. Chem. Asian J. 2014, 9,
268–274.
6.
7.
8.
For scales of -nucleophilicity in C–C bond-forming reactions, see
Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66–
77 and references therein.
a The reaction was conducted in DCE/HFIP (1:1) at 65 °C.
b The reaction was conducted in DCE/HFIP (9:1) at 65 °C.
For an example of allylation of benzyl alcohols and derivatives
using a stoichiometric activator, see Kabalka, G. W.; Yao, M.-L.;
Borella, S.; Goins, L. K. Organometallics 2007, 26, 4112–4114.
For selected examples of catalytic allylation of benzyl alcohols
and derivatives, see (a) Kaur, G.; Kaushik, M.; Trehan, S.
Tetrahedron Lett. 1997, 38, 2521–2521. (b) Saito, T.; Yasuda, M.;
Baba, A. Synlett 2005, 1737–1739. (c) Saito, T.; Nishimoto, Y.;
Yasuda, M.; Baba, A. J. Org. Chem. 2006, 71, 8516–8522. (d)
Han, J.; Cui, Z.; Wang, J.; Liu, Z. Synth. Commun. 2010, 40,
2042–2046. (e) Kumar, G. G. K. S. N.; Laali, K. K. Org. Biomol.
Chem. 2012, 10, 7347–7355. (f) Hassner, A.; Bandi, C. R. Synlett
2013, 1275–1279. (g) Fan, X.; Cui, X.-M.; Guan. Y.-H.; Fu, L.-
A.; Lv, H.; Guo. K.; Zhu. H.-B. Eur. J. Org. Chem. 2014, 498–
501. (h) Saito, M.; Tsuji, N.; Kobayashi, Y.; Takemoto, Y. Org.
Lett. 2015, 17, 3000–3003. (i) Orizu, I.; Bolshan, Y. Tetrahedron
Lett. 2016, 57, 5798–5800.
In terms of the mechanism, since allyltrimethylsilane possess
nucleophilic parameters6 similar to the ones of the aromatic
nucleophiles used in the Friedel-Crafts benzylation of benzyl
alcohols and diarylmethanols promoted by XtalFluor-E,2f we
hypothesize that both transformations proceed through a similar
mechanism as shown in Figure 1.
In summary, we have reported the direct allylation of benzyl
alcohols, diarylmethanols and triarylmethanols mediated by
XtalFluor-E using allyltrimethylsilane.
Acknowledgments
9.
For other synthetic access to similar products, see (a) Mahoney, S.
J.; Lou, T.; Bondarenko, G.; Fillion, E. Org. Lett. 2012, 14, 3474–
3477. (b) Wang, G.-Z.; Jiang, J.; Bu, X.-S.; Dai, J.-J.; Xu, J.; Fu,
Y.; Xu, H.-J. Org. Lett. 2015, 17, 3682–3685. (c) Sha, S.-C.;
Jiang, H.; Mao, J.; Bellomo, A.; Jeong, S. A.; Walsh, P. J. Angew.
Chem. Int. Ed. 2016, 55, 1070–1074. (d) Kawashima, H.; Ogawa,
N.; Saeki, R.; Kobayashi, Y. Chem. Commun. 2016, 52, 4918–
4921.
We thank Olivier Laflamme and Pier Alexandre Champagne
(Université Laval) for some initial experiments. This work was
supported by the Natural Sciences and Engineering Research
Council of Canada, OmegaChem and the Université Laval.
10. The formation of di(3-phenylpropyl)ether from the reaction of 3-
phenylpropan-1-ol with XtalFluor-E has been reported previously
(see ref. 1b) and it was proposed that the ether was formed by the
SN2 attack of the alkoxy-N,N-diethylaminodifluorosulfane
intermediate by the unreacted alcohol. We assume a similar
mechanism here, although we cannot exclude a SN1 pathway.
Supplementary Material
Supplementary data associated with this article can be found,
in the online version, at …
References and notes
1.
2.
(a) Beaulieu, F.; Beauregard, L.-P.; Courchesne, G.; Couturier,
M.; Laflamme, F.; L’Heureux, A. Org. Lett. 2009, 11, 5050–5053.
(b) L’Heureux, A.; Beaulieu, F.; Bennet, C.; Bill, D. R.; Clayton,
S.; Laflamme, F.; Mirmehrabi, M.; Tadayon, S.; Tovell, D.;
Couturier, M. J. Org. Chem. 2010, 75, 3401–3411. (c) Mahé, O.;
L’Heureux, A.; Couturier, M.; Bennett, C.; Clayton, S.; Tovell,
D.; Beaulieu, F.; Paquin, J.-F. J. Fluorine Chem. 2013, 153, 57–
60.
(a) Pouliot, M.-F.; Angers, L.; Hamel, J.-D.; Paquin, J.-F. Org.
Biomol. Chem. 2012, 10, 988–993. (b) Pouliot, M.-F.; Angers, L.;
Hamel, J.-D.; Paquin, J.-F. Tetrahedron Lett. 2012, 53, 4121–
4123. (c) Pouliot, M.-F.; Mahé, O.; Hamel, J.-D.; Desroches, J.;
Paquin, J.-F. Org. Lett. 2012, 14, 5428–5431. (d) Mahé, O.;
Desroches, J.; Paquin, J.-F. Eur. J. Org. Chem. 2013, 4325–4331.