S. Ohnuma et al. / Bioorg. Med. Chem. Lett. 14 (2004) 1309–1311
1311
Table 3. Effect of 1-N-substituent on the biological activities
ability, and Ms. Yoshie Nakatsuji for her technical
assistance.
References and notes
1. Suckling, K. E.; Stange, E. F. J. Lipid Res. 1985, 26, 647.
2. Field, F. J.; Salome, R. G. Biochim. Biophys. Acta 1982,
712, 557.
3. Heider, J. G.; Pickens, C. E.; Kelly, L. A. J. Lipid Res.
1983, 24, 1127.
4. Drevon, C. A.; Engelhorn, S. C.; Steinberg, D. J. Lipid
Res. 1980, 21, 1065.
5. Khan, B.; Wilcox, H. G.; Heimberg, M. Biochem. J. 1989,
258, 807.
6. Cianflone, K. M.; Yasruel, Z.; Rodriguez, M. A.;
Sniderman, A. D. J. Lipid Res. 1990, 31, 2045.
7. (a) Sliskovic, D. R.; White, A. D. Trends Pharmacol. Sci.
1991, 12, 194. (b) Rodriguez, A.; User, D. C. Athero-
sclerosis 2002, 161, 45. (c) Hirakawa, Y.; Shimokawa, H.
Folia Pharamacaol. Jpn 2001, 118, 389.
Compd
R2
Enzyme assay
a
Cell based assay
IC50b (nM)
IC50 (nM)
3j
H
CH3
100
8
9
13
25
68
13
>1000
158
170
50
11
230
35
3d
3k
3l
3m
3n
3o
CH2CH3
(CH2)2CH3
(CH2)3CH3
CH(CH3)2
(CH2)4CH3
a In vitro ACAT inhibition determined in rabbit liver microsomes.
b In vitro ACAT inhibition determined in rat macrophages.
8. (a) Matsuda, K. Med. Res. Rev. 1994, 14, 271. (b)
McCarthy, P. A. Med. Res. Rev. 1993, 13, 139.
9. (a) For examples of fatty acid anilides, see: Roth, B. D.;
Stanfield, R. L. J. Med. Chem. 1992, 35, 1609. (b) McCathy,
P. A. J. Med. Chem. 1994, 37, 1252. (c) Kataoka,
K.; Yamaguchi, H. J. Med. Chem. 1995, 38, 3174.
(d) Matsuyama, N. Bioorg. Med. Chem. Lett. 1999, 9,
2039. (e) Krause, B. R. J. Lipid Res. 1993, 34, 279. (f)
Murakami, S. Cell. Mol. Biol. 1996, 42, 865. (g) Kataoka,
K.; Yamaguchi, H. J. Med. Chem. 1996, 39, 1262.
10. (a) For examples of phenylureas, see: Meguro, K.;
Tawada, H. J. Med. Chem. 1994, 37, 2079. (b) Tawada,
H.; Meguro, K. Chem. Pharm. Bull. 1995, 43, 616. (c)
Higley, C. A.; Wexler, R. R. J. Med. Chem. 1994, 37,
3511. (d) J. Lipid Res. 1989, 30, 681. (e) Sekiya, T.;
Umezu, K. Chem. Pharm. Bull. 1994, 42, 586. (f) O’Brien,
P. M.; Stanfield, R. L. J. Med. Chem. 1994, 37, 1810. (g)
Trivedi, B. K.; Krause, B. R. J. Med. Chem. 1994, 37,
1652. (h) Kimura, T.; Yamatsu, I. J. Med. Chem. 1993,
36, 1641. (i) Tanaka, A.; Tanaka, H. Bioorg. Med. Chem.
1998, 6, 15.
ring was strongly effective in enhancing the activity and
the best result was obtained with 3d, as we expected.
Finally, the effect of the 1-N-alkylsubstituents (R2) on
the 2-naphthylidione ring was investigated. The results
are shown in Table 3. Alkyl substitution was highly
effective in enhancing the inhibitory activities in both
assay systems. The effect of the length of the straight-
chain alkyl substituents was not clear in the enzyme
assay, though the effect was clearer in the cell-based
assay. The best result was obtained with n-butyl sub-
stitution, 3m. In contrast, the branched-chain alkyl
compound 3n showed diminished activity.
We also investigated the effect of the N-alkyl substituent
in the 2-methoxy analogues of 3c, however, no note-
worthy result was obtained. Furthermore, 2-methoxy
isomer 3p (R1=2-OMe, R2=nBu, R3=2,6-iPr2) showed
only about 50% of the permeability in a Caco-2 mem-
brane16 than the corresponding 3-methoxy isomer 3m.
11. Estel, L.; Linard, F.; Marsais, F.; Godard, A.; Queguiner,
G. J. Heterocyclic Chem. 1989, 26, 105.
12. Bell, S. C.; Sulkowsky, T. S.; Gochman, C.; Childness,
S. J. J. Org. Chem. 1962, 27, 562.
13. Ninomiya, K.; Shioiri, T.; Yamada, S. Tetrahedron 1974,
30, 2151.
14. Heider, J. G.; Pickens, C. E.; Kelly, L. A. J. Lipid Res.
1983, 22, 271.
15. Miyazaki, A.; Horiuchi, S. Biochim. Biophys. Acta 1992,
1126, 73.
Thus, compound 3m (SM-32504) was identified as a
potent ACAT inhibitor.17 In vivo evaluation of 3m
showed that it decreased the serum cholesterol level by
38% (at a dosage of 10 mg/kg/d for 4 d) and 40% (at a
dosage of 30 mg/kg/d for 4 d) in high fat and high cho-
lesterol-fed mice, respectively.18
16. Yamashita, S. Eur. J. Pharm. Sci. 2000, 10, 195 The
apparent permeability coefficient, Papp value for 2-
methoxy isomer 3p was 15(nm/s) compared to 29(nm/s)
for 3m.
In conclusion, we found that naphthylidinoylureas 3
were a novel series of ACAT inhibitor. In paticular,
compound 3m showed potent inhibitory activity in vitro
and excellent efficacy in vivo. Further investigation on
these inhibitors is currently in progress and the results
will be reported in the near future.
1
17. Selected spectroscopic data for 3m (SM-32504): H NMR
(300 MHz, DMSO-d6) d 0.95 (t, 3H, J=7.34 Hz), 1.01 (br,
12H), 1.35–1.47 (m, 2H), 1.64–1.75 (m, 2H), 2.86–2.95 (m,
2H), 3.76 (s, 3H), 4.51 (t, 2H, J=7.70 Hz), 6.91 (br, 2H),
7.02–7.04 (m, 2H), 7.12–7.17 (m, 1H), 7.24 (dd, 1H,
J=4.59, 7.89 Hz), 7.39 (dd, 1H, J=7.89, 8.25 Hz), 7.61
(d, 1H, J=6.60 Hz), 7.72 (d, 1H, J=3.49 Hz), 8.60 (d,
1H, J=4.59 Hz); IR (neat) 2960, 1678, 1646, 1600, 1585,
1562, 1456, 1249 cmÀ1; APCI-MS m/z 527 (MH+).
Acknowledgements
The authors thank Mr. Yukinobu Igarashi and Mr.
Yasushi Tsutsumi in measuring the cellular perme-
18. Ioriya, K.; Noguchi, T.; Muraoka, M.; Fujita, K.;
Shimizu, H.; Ohashi, N. Pharmacology 2002, 65, 18.