Organometallics 1996, 15, 4791-4797
4791
Su bstitu tion Rea ction s of (C5P h 5)Cr (CO)3: Str u ctu r a l,
Electr och em ica l, a n d Sp ectr oscop ic Ch a r a cter iza tion of
(C5P h 5)Cr (CO)2L (L ) P Me3, P Me2P h , P (OMe)3)
D. J ohn Hammack,1a Mills M. Dillard,1a Michael P. Castellani,*,1a
Arnold L. Rheingold,*,1b Anne L. Rieger,1c and Philip H. Rieger*,1c
Departments of Chemistry, Marshall University, Huntington, West Virginia 25755,
University of Delaware, Newark, Delaware 19716, and Brown University,
Providence, Rhode Island 02912
Received May 20, 1996X
The radical complex (C5Ph5)Cr(CO)3 reacts with small, neutral, monodentate Lewis bases
(PMe3, PMe2Ph, P(OMe)3) in THF at -78 °C (PMe2Ph reacts at ambient temperature) to
yield the monomeric substitution products (C5Ph5)Cr(CO)2L‚THF as thermally stable solids.
Electrochemical and spectroscopic data are provided. An X-ray crystal structure of the
hemisolvate (C5Ph5)Cr(CO)2PMe3‚0.5THF was obtained. Frozen-solution ESR spectra of (C5-
Ph5)Cr(CO)2L in toluene are comparable to those of other low-spin d5 “piano-stool” complexes.
Rotation of the Cr(CO)2L moiety relative to the C5Ph5 ring is rapid on the ESR time scale in
low-temperature liquid solutions and leads to axial powderlike spectra. Analysis of this
effect leads to significant insights into the electronic structure.
In tr od u ction
studied extensively the substitution reactions of (C5R5)-
Cr(CO)3 (R ) H,9 Me9e,10) with phosphines. Where R
) H (Cp) isolation of a product complex requires larger
phosphines, while for R ) Me (Cp*) only smaller
phosphines replace CO in the starting complex.
Over the past two decades, the study of paramagnetic
organometallic complexes has greatly expanded.2 These
complexes are generally highly reactive, and many have
been postulated as reaction intermediates. In particu-
lar, the (C5R5)Cr(CO)3 (R ) H, Me, Ph) family of
complexes recently has received much attention. The
R ) H and Me complexes both exist in equilibria
between 17e monomers and 18e dimers in solution and
as dimers in the solid state,3 while for R ) Ph the
complex exists solely as a 17e monomer both in solution
and the solid state.4
Seventeen electron complexes containing CO ligands
frequently undergo substitution reactions under mild
conditions.5,6 The reactions tend to proceed via associa-
tive mechanisms7 because of incompletely filled sets of
bonding molecular orbitals.8 Baird and co-workers have
The very large size of the C5Ph5 ligand should
significantly restrict the size of substituents that can
substitute CO in (C5Ph5)Cr(CO)3, 1. Three small,
monodentate Lewis bases, PMe3, PMe2Ph, and P(OMe)3,
react with 1 to yield isolable products, (C5Ph5)Cr(CO)2L.
These compounds have been spectroscopically and elec-
trochemically characterized.
There have been many ESR studies of low-spin d5
“piano-stool” complexes such as (C5R5)Cr(CO)3-xLx (R
) H, Me), [(arene)Cr(CO)3-xLx]+, and Mn(II) analogs.11
As we will show, the ESR spectra of (C5Ph5)Cr(CO)2L
fit comfortably into the general scheme for these com-
plexes and are thus rather unremarkable. However, the
unique steric bulk of the C5Ph5 ligand leads to selective
averaging of anisotropies in the ESR spectra of low-
temperature liquid solutions, and parameters obtained
from such spectra provide insights into the electronic
structure which were unavailable in previous studies.
X Abstract published in Advance ACS Abstracts, September 15, 1996.
(1) (a) Marshall University. (b) University of Delaware. (c) Brown
University.
(2) (a) Connelly, N. G.; Geiger, W. C. Adv. Organomet. Chem. 1984,
23, 1. (b) Baird, M. C. Chem. Rev. 1988, 88, 1217. (c) Astruc, D. Chem.
Rev. 1988, 88, ll89. (d) Organometallic Radical Processes; Trogler, W.
C., Ed.; Elsevier: Amsterdam, 1990.
(3) (a) Adams, R. D.; Collins, D. E.; Cotton, F. A. J . Am. Chem. Soc.
1974, 96, 749. (b) McLain, S. J . J . Am. Chem. Soc. 1988, 110, 643. (c)
Goh, L. Y.; Khoo, S. K.; Lim, Y. Y. J . Organomet. Chem. 1990, 399,
115. (d) Goh, L. Y.; Hambley, T. W.; Darensbourg, D. J .; Reibenspies,
J . J . Organomet. Chem. 1990, 381, 349. (e) Watkins, W. C.; J aeger,
T.; Kidd, C. E.; Fortier, S.; Baird, M. C.; Kiss, G.; Roper, G. C.; Hoff,
C. D. J . Am. Chem. Soc. 1992, 114, 907. (f) The fluorenyl complex
(C13H9)Cr(CO)3 has also been prepared. It is also unstable and
undergoes a Cr(CO)3 shift from the C5 ring to a C6 ring, followed by a
dimerization through the methine C5 carbon. Novikova, L. N.; Ustynyuk,
N. A.; Tumanskii, B. L.; Petrovskii, P. V.; Borisenko, A. A.; Kukharen-
ko, S. V.; Strelets, V. V. Isv. Akad. Nauk, Ser. Khim. 1995, 1354 (Russ.
Chem. Bull., Engl. Transl. 1995, 44, 1306).
(4) Hoobler, R. J .; Hutton, M. A.; Dillard, M. M.; Castellani, M. P.;
Rheingold, A. L.; Rieger, A. L.; Rieger, P. H.; Richards, T. C.; Geiger,
W. E. Organometallics 1993, 12, 116.
(5) (a) Kochi, J . K. Organometallic Mechanisms and Catalysis; Aca-
demic: New York, 1978; Chapter 8. (b) Reference 2d, Chapters 4 and
9.
(7) (a) Atwood, J . D. Inorganic and Organometallic Reaction Mech-
anisms; Brooks/Cole: Monterey, CA, 1985; p 123. (b) Crabtree, R. H.
The Organometallic Chemistry of the Transition Metals; J ohn Wiley
and Sons: New York, 1988; pp 80-81.
(8) (a) Therien, M. J .; Trogler, W. C. J . Am. Chem. Soc. 1988, 110,
4942. (b) Lin, Z.; Hall, M. B. Inorg. Chem. 1992, 31, 2791.
(9) (a) Cooley, N. A.; Watson, K. A.; Fortier, S.; Baird, M. C.
Organometallics 1988, 7, 2563. (b) Cooley, N. A.; MacConnachie, P. T.
F.; Baird, M. C. Polyhedron 1988, 7, 1965. (c) Cooley, N. A.; Baird, M.
C.; Morton, J . R.; Preston, K. F.; Le Page, Y. J . Magn. Reson. 1988,
76, 325. (d) Watkins, W. C.; Macartney, D. H.; Baird, M. C. J .
Organomet. Chem. 1989, 377, C52. (e) Fortier, S.; Baird, M. C.; Preston,
K. F.; Morton, J . R.; Ziegler, T.; J aeger, T. J .; Watkins, W. C.; MacNeil,
J . H.; Watson, K. A.; Hensel, K.; Le Page, Y.; Charland, J .-P.; Williams,
A. J . J . Am. Chem. Soc. 1991, 113, 542. (f) O’Callaghan, K. A. E..;
Brown, S. J .; Page, J . A.; Baird, M. C.; Richards, T. C.; Geiger, W. E.
Organometallics 1991, 10, 3119. (g) Watkins, W. C.; Hensel, K.; Fortier,
S.; Macartney, D. H.; Baird, M. C.; McLain, S. J . Organometallics 1992,
11, 2418.
(6) Huang, Y.; Carpenter, G. B.; Sweigart, D. A.; Chung, Y. K.; Lee,
B. Y. Organometallics 1995, 14, 1423.
(10) J aeger, T. J .; Baird, M. C. Organometallics 1988, 7, 2074.
(11) Rieger, P. H. Coord. Chem. Rev. 1994, 135, 203.
S0276-7333(96)00374-3 CCC: $12.00 © 1996 American Chemical Society