6080
J . Org. Chem. 1997, 62, 6080-6082
dipeptide isosteres with a variety of designed side chain
substituents.
Asym m etr ic Ald ol Rou te to
Hyd r oxyeth yla m in e Isoster e:
Ster eoselective Syn th esis of th e Cor e Un it
of Sa qu in a vir
Arun K. Ghosh,* Khaja Azhar Hussain, and
Steve Fidanze
Department of Chemistry, University of Illinois at Chicago,
845 West Taylor Street, Chicago, Illinois 60607
Received April 17, 1997
Hydroxyethylamine isosteres have been extensively
utilized in the synthesis of potent and selective HIV
protease inhibitors1 including saquinavir,2 a protease
inhibitor recently approved by the U.S. Food and Drug
Administration for the treatment of AIDS.3 These dipep-
tide mimics are typically prepared by opening the cor-
responding protected aminoalkyl epoxides with amines.
In connection with our study aimed at the design and
synthesis of novel protease inhibitors, we required an
enantioselective and efficient synthesis of a number of
protected aminoalkyl epoxides that are not limited to
amino acid derived substituents.4 We describe here a
convenient route to the versatile (1′S,2S)-(1′-((tert-butyl-
oxycarbonyl)amino)-2-phenylethyl)oxirane (2) utilizing an
asymmetric syn-aldol reaction and Curtius rearrange-
ment sequence. The epoxide 2 was converted to the core
unit of saquinavir5 and other protease inhibitors.1,2 The
present synthesis is easily adaptable to a range of other
We planned to insert both of the asymmetric centers
in hydroxyethylamine isostere 1 by Evans’ asymmetric
syn-aldol process.6 The requisite chiral oxazolidinone 5
was prepared from hydrocinnamic acid and commercially
available7 (4S,5R)-indano[1,2-d]oxazolidin-2-one by stan-
dard protocol. Aldol reaction of the boron enolate of 5
with (benzyloxy)acetaldehyde in CH2Cl2 at -78 °C pro-
vided the syn-aldol product 6 as a single diastereomer
in 88% yield after silica gel chromatography. Aldol
reaction of (S)-(-)-benzyl-2-oxazolidinone-derived car-
boximide also provided comparable yield (83%) of syn-
aldol product. The removal of the chiral auxiliary was
effected by exposure to lithium hydroperoxide in aqueous
THF at 0 °C for 1 h.8 To incorporate the amine func-
tionality, the resulting â-hydroxy acid was then subjected
to Curtius rearrangement9 with diphenylphosphoryl
azide and triethylamine in refluxing benzene to provide
the oxazolidinone 7 in 69% yield after chromatography.
The oxazolidinone ring stereochemistry was assigned on
the basis of the precedence that the Curtius rearrange-
ment proceeds with retention of configuration of the
(1) (a) Rich, D. H.; Green, J .; Toth, M. V.; Marshall, G. R.; Kent, S.
B. H. J . Med. Chem. 1990, 33, 1285. (b) Rich, D. H.; Sun, C.-Q.; Vara
Prasad, J . V. N.; Pathiasseril, A.; Toth, M. V.; Marshall, G. R.; Clare,
M.; Mueller, R. A.; Houseman, K. J . Med. Chem. 1991, 34, 1222. (c)
Ghosh, A. K.; Thompson, W. J .; McKee, S. P.; Duong, T. T.; Lyle, T.
A.; Chen, J . C.; Darke, P. L.; Zugay, J . A.; Emini, E. A.; Schleif, W. A.;
Huff, J . R.; Anderson, P. S. J . Med. Chem. 1993, 36, 292. (d) Ghosh,
A. K.; Thompson, W. J .; Lee, H. Y.; McKee, S. P.; Munson, P. M.;
Duong, T. T.; Darke, P. L.; Zugay, J . A.; Emini, E. A.; Schleif, W. A.;
Huff, J . R.; Anderson, P. S. J . Med. Chem. 1993, 36, 924. (e) Ghosh, A.
K.; Thompson, W. J .; Holloway, M. K.; McKee, S. P.; Duong, T. T.;
Lee, H. Y.; Munson, P. M.; Smith, A. M.; Wai, J . M.; Darke, P. L.;
Zugay, J . A.; Emini, E. A.; Schleif, W. A.; Huff, J . R.; Anderson, P. S.
J . Med. Chem. 1993, 36, 2300. (f) Ghosh, A. K.; Lee, H. Y.; Thompson,
W. J .; Culberson, J . C.; Holloway, M. K.; McKee, S. P.; Munson, P. M.;
Duong, T. T.; Smith, A. M.; Darke, P. L.; Zugay, J . A.; Emini, E. A.;
Schleif, W. A.; Huff, J . R.; Anderson, P. S. J . Med. Chem. 1994, 37,
1177. (g) Ghosh, A. K.; Thompson, W. J .; Fitzgerald, P. M. D.;
Culberson, J . C.; Axel, M. G.; McKee, S. P.; Huff, J . R.; Anderson, P.
S. J . Med. Chem. 1994, 37, 2506. (h) Vazquez, M. L.; Bryant, M. L.;
Clare, M.; DeCrescenzo, G. A.; Doherty, E. M.; Freskos, J . N.; Getman,
D. P.; Houseman, K. A.; J ulien, J . A.; Kocan, G. P.; Mueller, R. A.;
Shieh, H-S.; Stallings, W. C.; Stegeman, R. A.; Talley, J . J . J . Med.
Chem. 1995, 38, 581. (i) Ghosh, A. K.; Thompson, W. J .; Munson, P.
M.; Liu, W.; Huff, J . R. Bioorg. and Med. Chem. Lett. 1995, 5, 83. (j)
Ghosh, A. K.; Kincaid, J . F.; Walters, D. E.; Chen, Y.; Chaudhuri, N.
C.; Thompson, W. J .; Culberson, C.; Fitzgerald, P. M. D.; Lee, H. Y.;
McKee, S. P.; Munson, P. M.; Duong, T. T.; Darke, P. L.; Zugay, J . A.;
Schleif, W. A.; Axel, M. G.; Lin, J .; Huff, J . R. J . Med. Chem. 1996, 39,
3278 and references cited therein.
1
migrating carbon atom. Indeed, the observed H-NMR
(400 MHz) coupling constant of vicinal protons (J AB ) 8
Hz) is consistent with a syn-stereochemical relationship.10
Basic hydrolysis of oxazolidinone 7 with aqueous KOH
at 70 °C afforded the corresponding syn-amino alcohol
which was treated with di-tert-butyl dicarbonate in
CH2Cl2 at 23 °C to furnish the BOC derivative 8 in 87%
isolated yield (Scheme 1).
For conversion of 8 to the aminoalkyl epoxide 2, the
benzyl group was deprotected by catalytic hydrogenation
of 8 over Pearlman’s catalyst in ethyl acetate for 12 h.
The resulting diol was efficiently converted to epoxide 2
in the following two-step sequence: (1) treatment of the
diol with commercially available 1-(chlorocarbonyl)-1-
methylethyl acetate in dry chloroform at 23 °C; (2)
exposure of the corresponding chloroacetate derivative
to an excess of NaOMe in THF for 4 h to provide the
(2) (a) Roberts, N. A.; Martin, J . A.; Kinchington, D.; Broadhurst,
A. V.; Craig, J . C.; Duncan, I. B.; Galpin, S. A.; Handa, B. K.; Kay, J .;
Krohn, A.; Lambert, R. W.; Merrett, J . H.; Mills, J . S.; Parkes, K. E.
B.; Redshaw, S.; Ritchie, A. J .; Taylor, D. L.; Thomas, G. J .; Machin,
P. J . Science 1990, 248, 358. (b) Skinner, C.; Sedwick, A.; Bragman,
K.; Pinching, A. J .; Weber, J . Abstracts at the 9th Int. Conf. on AIDS,
Berlin, 1993.
(3) (a) Thaisrivongs, S. HIV Protease Inhibitors. Annu. Rep. Med.
Chem. 1994, 29, 133. (b) Katz, R. A.; Skalka, A. M. Annu. Rev. Biochem.
1994, 63, 133.
(6) (a) Evans, D. A.; Bartroli, J .; Shih, T. L. J . Am. Chem. Soc. 1981,
103, 2127. (b) Evans, D. A. Aldrichimica Acta 1982, 15, 23.
(7) Ghosh, A .K.; Duong, T. T.; McKee, S. P. J . Chem. Soc., Chem.
Commun. 1992, 1673. This chiral auxiliary is now available from
Aldrich Chemical Co.
(4) For previous synthesis of nonamino acid derived synthesis, see:
Ghosh, A. K.; McKee, S. P.; Lee, H. Y.; Thompson, W. J . J . Chem. Soc.,
Chem. Commun. 1992, 273 and see ref 1e.
(5) Parkes, K. E. B.; Bushnell, D. J .; Crackett, P. H.; Dunsdon, S.
J .; Freeman, A. C.; Gunn, M. P.; Hopkins, R. A.; Lambert, R. W.;
Martin, J . A.; Merrett, J . H.; Redshaw, S.; Spurden, W. C.; Thomas,
G. J . J . Org. Chem. 1994, 59, 3656.
(8) Evans, D. A.; Britton, T. C.; Ellman, J . A. Tetrahedron Lett. 1987,
28, 6141.
(9) (a) Shioiri, T.; Ninomiya, K.; Yamada, S. J . Am. Chem. Soc. 1972,
94, 6203. (b) Grunewald, G. L.; Ye, Q. J . Org. Chem. 1988, 53, 4021.
(c) Ghosh, A. K.; Liu, W. J . Org. Chem. 1996, 61, 6175.
(10) Ghosh, A. K.; McKee, S. P.; Thompson, W. J . Tetrahedron Lett.
1991, 32, 5729 and references cited therein.
S0022-3263(97)00694-4 CCC: $14.00 © 1997 American Chemical Society