10.1002/chem.201805878
Chemistry - A European Journal
FULL PAPER
reactions (Table 1), the computations were carried out using
Rh2(esp-OMe)2 and the substrate without structural simplification
at 353 K in PhCl solvent[37] with a closed-shell singlet state[38]
(RB97XD/6-311G* and SDD). Theoretical analyses for the
generation of Rh-nitrene were previously performed,[7a] and we
therefore started our calculations from Rh-nitrene RT. The
REFERENCES
[1]
a) C. G. Espino, J. Du Bois, Angew. Chem. Int. Ed. 2001, 40, 598;
Angew. Chem. 2001, 113, 618; b) C. G. Espino, P. M. Wehn, J. Chow,
J. Du Bois, J. Am. Chem. Soc. 2001, 123, 6935.
N+−N− ylide intermediate IMcis-C−N possessing
a cis-fused
diazabicyclic ring system was generated with the lowest
activation energy of +6.9 kcal/mol via N−N bond-forming
transition state TS1cis-C−N among the possible reactions from RT.
The following [1,2]-acyl transfer[ 39 ] consisting of C−N bond
cleavage proceeded with reasonable activation energy (IMcis-
C−N→TS2cis-C−N, +12.5 kcal/mol), furnishing the amide insertion
product PDC−N after dissociation of Rh2(esp-OMe)2.[40] The bond
distances and dihedral angels of PDC−N are consistent with those
obtained from X-ray data of 2a. Although the formation of trans-
fused N+−N− ylide species IMtrans-C−N and the sequential acyl
migration also reached PDC−N, the activation energy of the
former step was +18.5 kcal/mol (RT→TS1trans-C−N), indicating the
disfavor of the intermediacy of trans-fused N+−N− ylide.
Furthermore, postulated transient species PTconc of the amide
insertion in a concerted manner has at least +20.3 kcal/mol,
indicating that the pathway would not be operative. On the other
hand, a competing C−H insertion reaction proceeded with
reasonably low activation energy (RT→TSC−H, +8.2 kcal/mol),
[2]
Examples of metal-nitrene reactions in or before 2001: a) R. Breslow,
S. H. Gellman, J. Am. Chem. Soc. 1983, 105, 6728; b) L. A. Bottomley,
F. L. Neely, J. Am. Chem. Soc. 1988, 110, 6748; c) J. W. Herndon, L.
A. McMullen, J. Organomet. Chem. 1989, 368, 83; d) D. A. Evans, M.
M. Faul, M. T. Bilodeau, J. Org. Chem. 1991, 56, 6744; e) M. Akazome,
T. Kondo, Y. Watanabe, J. Org. Chem. 1993, 58, 310; f) D. A. Evans,
M. T. Bilodeau, M. M. Faul, J. Am. Chem. Soc. 1994, 116, 2742; g) S.
T. Massey, B. Mansour, L. McElwee-White, J. Organomet. Chem. 1995,
485, 123; h) I. Nägeli, C. Baud, G. Bernardinelli, Y. Jacquier, M.
Moraon, P. Müllet, Helv. Chim. Acta 1997, 80, 1087; i) D. P. Albone, P.
S. Aujla, S. Challenger, A. M. Derrick, J. Org. Chem. 1998, 63, 9569; j)
J. A. Halfen, J. K. Hallman, J. A. Schultz, J. P. Emerson,
Organometallics 1999, 18, 5435; k) X.-Q. Yu; J.-S. Huang; X.-G. Zhou,
C.-M. Che, Org. Lett. 2000, 2, 2233; l) B. M. Chanda, R. Vyas, A. V.
Bedekar, J. Org. Chem. 2001, 66, 30.
[3]
[4]
a) J. Du Bois, Org. Process Res. Dev. 2011, 15, 758; b) J. L. Roizen,
M. E. Harvey, J. Du Bois, Acc. Chem. Res. 2012, 45, 911; c) J. Egger,
E. M. Carreira, Nat. Prod. Rep. 2014, 31, 449.
a) K. Guthikonda, J. Du Bois, J. Am. Chem. Soc. 2002, 124, 13672; b)
A. J. Catino, J. M. Nichols, R. E. Forslund, M. P. Doyle, Org. Lett. 2005,
7, 2787; c) P. Muller, C. Fruit, Chem. Rev. 2003, 103, 2905; d) T.
Uchida, T. Katsuki, Chem. Rec. 2014, 14, 117.
giving the thermodynamically most stable spiroaminal PDC−H
.
More importantly, the energy gap between TSC−H and TS1cis-C−N
as a saddle point on the potential energy surface is 1.3 kcal/mol,
and therefore the chemoselective formal amide insertion
reaction over C−H insertion would be realized as a kinetically
advantageous pathway.41
[5]
a) M. P. Paudyal, A. M. Adebesin, S. R. Burt, D. H. Ess, Z. Ma, L. Kürti,
J. R. Falck, Science 2016, 353, 1144; b) S. Munnuri, A. M. Adebesin,
M. P. Paudyal, M. Yousufuddin, A. Dalipe, J. R. Falck, J. Am. Chem.
Soc. 2017, 139, 18288; c) K. Arai, Y. Ueda, K. Morisaki, T. Furuta, T.
Sasamori, N. Tokitoh, T. Kawabata, Chem. Commun. 2018, 54, 2264;
d) H. Lebel, K. Huard, S. Lectard, J. Am. Chem. Soc. 2005, 127,
14198; e) H. Lebel, H. Piras, J. Bartholomꢀꢁs, Angew. Chem. Int. Ed.
2014, 53, 7300; Angew. Chem. 2014, 126, 7428.
Conclusion
[6]
[7]
B. Darses, R. Rodrigues, L. Neuville, M. Mazurais, P. Dauban, Chem.
Commun. 2017, 53, 493.
In conclusion, we developed a dirhodiumII,II-catalyzed formal
nitrene insertion into an amide C−N bond and sulfonamide S−N
bond. The intramolecular amide insertion constructed fused ring
systems with an N−N bond using the Rh2(esp-OMe)2 catalyst.
Experimental and theoretical studies indicated that the insertion
reaction proceeds through the formation of Rh-associated N+−N−
ylide with amide nitrogen, followed by [1,2]-acyl group migration,
which are thermodynamically unfavorable, but kinetically faster
than that of the competing C−H insertion reaction. Further
studies to unveil the unique reactivity of metal-nitrene species
are underway in our laboratory.
a) X, Lin, C. Zhao, C.-M. Che, Z. Ke, D. L. Phillips, Chem. - Asian J.
2007, 2, 1101; b) X. Zhang, H. Xu, C. Zhao, J. Org. Chem. 2014, 79,
9799; c) K. W. Fiori, C. G. Espino, B. H. Brodsky, J. Du Bois,
Tetrahedron 2009, 65, 3042; d) V. Bagchi, P. Paraskevopoulou, P. Das,
L. Chi, Q. Wang, A. Choudhury, J. S. Mathieson, L. Cronin, D. B.
Pardue, T. R. Cundari, G. Mitrikas, Y. Sanakis, P. Stavropoulos, J. Am.
Chem. Soc. 2014, 136, 11362; e) M. M. Dίaz-Requejo, T. R. Belderraίn,
M. C. Nicasio, S. Trofimenko, P. J. Pérez, J. Am. Chem. Soc. 2003,
125,12078; f) M. J. B. Aguila, Y. M. Badiei, T. H. Warren, J. Am. Chem.
Soc. 2013, 135, 9399.
[8]
a) W. J. McKillip, E. A. Sedor, B. M. Culbertson, S. Wawzonek, Chem.
Rev. 1973, 73, 255; b) P. Rademacher, Science of Synthesis 2008,
40b, 1133; c) G. Qiu, Y. Kuang, J. Wu, Adv. Synth. Catal. 2014, 356,
3483.
[9]
J. Li, J. S. Cisar, C.-Y. Zhou, B. Vera, H. Williams, A. D. Rodríguez, B.
F. Cravatt, D. Romo, Nature Chem. 2013, 5, 510.
[10]
L. Maestre, R. Dorel, O. Pablo, I. Escofet, W. M. C. Sameera, E.
Álvarez, F. Maseras, M. M. Díaz-Requejo, A. M. Echavarren, P. J.
Pérez, J. Am. Chem. Soc. 2017, 139, 2216.
Acknowledgements
[11] a) M. Ito, A. Tanaka, K. Higuchi, S. Sugiyama, Eur. J. Org. Chem. 2017,
1272; b) S. A. Pujari, L. Guénée, J. Lacour, Org. Lett. 2013, 15, 3930;
c) S. L. Jain, V. B. Sharma, B. Sain, Tetrahedron Lett. 2003, 44, 4385.
This work was supported by the Nagai Memorial Research
Scholarship from the Pharmaceutical Society of Japan, Futaba
Electronics Memorial Foundation, JSPS KAKENHI Grant
Numbers JP18K05098 and 18H02550. Numerical calculations
were carried out on SR24000 at Institute of Management and
Information Technologies, Chiba University of Japan.
[12]
a) M. Kono, S. Harada, T. Nemoto, Chem. - Eur. J. 2017, 23, 7428; b)
H. Nakayama, S. Harada, M. Kono, T. Nemoto, J. Am. Chem. Soc.
2017, 139, 10188; c) J. Ueda, S. Harada, H. Nakayama, T. Nemoto,
Org. Biomol. Chem. 2018, 16, 4675; d) H. Nakayama, S. Harada, A.
Kanda, I. M.-Y. Kwok, T. Nemoto, Tetrahedron 2018, 74, 2435.
The reaction control of metal-nitrenes remains a challenge. a) M. E.
Harvey, D. G. Musaev, J. Du Bois, J. Am. Chem. Soc. 2011, 133,
17207; b) E. N. Bess, R. J. DeLuca, D. J. Tindall, M. S. Oderinde, J. L.
Roizen, J. Du Bois, M. S. Sigman, J. Am. Chem. Soc. 2014, 136, 5783;
c) N. S. Dolan, R. J. Scamp, T. Yang, J. F. Berry, J. M. Schomaker, J.
Am. Chem. Soc. 2016, 138, 14658; d) M. Huang, T. Yang, J. D.
Paretsky, J. F. Berry, J. M. Schomaker, J. Am. Chem. Soc. 2017, 139,
17376.
[13]
Conflict of interest
[14]
B. M. Trost, B. M. O'Boyle, W. Torres, M. K. Ameriks, Chem. - Eur. J.
2011, 17, 7890.
The authors declare no conflict of interest.
Keywords: amination • heterocycle • insertion • nitrene • ylides
This article is protected by copyright. All rights reserved.