382
LETTERS
SYNLETT
2.
3.
Kozlowski, J. A. In Comprehensive Organic Synthesis, Trost. B. M.;
Fleming, I.; Semmelhack, M. F. Eds.; Pergamon Press, Oxford, 1991,
Vol. 4, 183.
assume coordination of the rhodium catalyst from a less hindered Re-
face of the olefin, hydroformylation would provide the α-12, which was
found experimentally.
For reviews of hydroformylation, see: (a) Cornils, B. In New Syntheses
with Carbon Monoxide; Fable, J. Ed.; Springer-Verlag: New York,
1980. (b) Tolman, C. A.; Faller, J. In Homogeneous Catalysis with
Metal Phosphine Complexes; Pignolet, L. H. Ed.; Plenum Press: New
York, 1983; Chapt. 2. (c) Dickson, R. S. In Homogeneous Catalysis
with Compounds of Rhodium and Iridium; Ugo, R.; James B. R. Eds.;
D. Reidel Publish Company: Dordrecht, 1985. (d) Beller, M.; Cornils,
B.; Frohning, C.D.; Kohlpaintner, C. W. J. Mol. Cat. A, 1995, 104, 17.
For reviews of stereoselectivity in the rhodium-catalyzed
hydroformylation, see: (a) Lazzaroni, R.; Pucci, S.; Bertozzi, S.; Pini,
D. J. Organomet. Chem. 1983, 247, C56. (b) Lazzaroni, F.; Biscarini,
P.; Bordoni, S.; Longoni, G.; Venturini, E. J. Organomet. Chem. 1996,
508, 59. For a review of asymmetric hydroformylation, see: Agbossou,
F.; Carpentier, J.-F.; Mortreux, A. Chem. Rev. 1995, 95, 2485. For
examples of asymmetric hydroformylation, see: (a) Nozaki, K.; Sakai,
N.; Nanno, T.; Higashijima, T.; Mano, S.; Horiuchi, T.; Takaya, H.
J. Am. Chem. Soc. 1997, 119, 4413 and references cited herein.
(b) Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J. Am. Chem. Soc.
1993, 115, 7033. For an example of diastereoselective
hydroformylation, see: Leighton, J. L.; O'Neil, D, N.; J. Am. Chem.
Soc. 1997, 119, 11118. For examples of 1,1-disubstituted alkenes, see:
(a) Botteghi, C.; Consiglio, G.; Ceccarelli, G.; Stefani, A. J. Org. Chem.
1972, 37, 1835. (b) Hoffmann, W.; Siegel, H. Tetrahedron Lett. 1975,
533. (c) Kollár, L.; Consiglio, G.; Pino, P. Chimia 1986, 40, 428.
(d) Gladiali, S.; Pinna, L. Tetrahedron: Asymmetry, 1991, 2, 623. For
examples of application to fine chemical synthesis, see: (a) Wuts, P. G.
M.; Obrzut, M. L.; Thompson, P. A. Tetrahedron Lett. 1984, 25, 4051.
(b) Nozaki, K.; Li. W.; Horiuchi, T.; Takaya, H.; Saito, T.; Yoshida, A.;
Matsumura, K.; Kato, Y.; Imai, T.; Miura, T.; Kumobayashi, H. J. Org.
Chem. 1996, 61, 7658.
Figure 1
To test the versatility of the olefins bearing a sugar moiety as substrates
for hydroformylation, we examined the hydroformylation of 1,1-
disubstituted olefins possessing hydroxy methyl 14, acetoxy methyl 16
and acetal 17 moieties. Hydroformylation of 14 under 80 atm of syn gas
at 80 °C for 60 h gave the aldehyde 15, in which the (R) isomer was
obtained exclusively in 66% yield. While the acetoxy methyl derivative
16 was less reactive than 14, only the (R) isomer 17 was obtained in
54% yield. When the acetal 18 was subjected to hydroformylation,
starting material was recovered quantitatively. It seems that the reaction
did not proceed due to steric hindrance of the acetal group.
4.
Takahashi, T.; Machida, K.; Kido, Y.; Nagashima, K.; Ebata, S.; Doi,
T. Chem. Lett. 1997, 1291.
5.
6.
Doi, T.; Komatsu, H.; Yamamoto, K. Tetrahedron Lett. 1996, 37, 6877.
(a) Burke, S. D.; Cobb, J. E. Tetrahedron Lett. 1986, 27, 4237.
(b) Burke, S. D.; Cobb, J. E.; Takeuchi, K. J. Org. Chem. 1990, 55,
2138. (c) Jackson, W. R.; Perlmutter, P.; Suh, G.-H. J. Chem. Soc.,
Chem. Commun. 1987, 724. (d) Jackson, W. R.; Perlmutter, P.;
Tasdelen, E. E. Tetrahedron Lett. 1990, 31, 2461. (e) Jackson, W. R.;
Moffat, M. R.; Perlmutter, P.; Tasdelen, E. E. Aust. J. Chem. 1992, 45,
823. (f) Breit, B. Angew. Chem., Int. Ed. Engl. 1996, 35, 2835. (g)
Breit, B. Chem. Commun. 1997, 591.
Scheme 3
7.
8.
Hanessian, S. In The Total Synthesis of Natural Products, The Chiron
Approach, Pergamon Press, Oxford, 1983.
(a) Friesen, R. W.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111,
6656. (b) Halcomb, R. L.; Danishefsky, S. J. J. Am. Chem. Soc. 1989,
111, 6661.
In conclusion, we have demonstrated that 1,1-disubstituted olefins
bearing a sugar moiety undergo hydroformylation in good to excellent
yields and with high stereoselectivities to provide the corresponding
aldehydes.
9.
Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976.
10. The ratio was determined by HPLC analysis after conversion of the
aldehydes 12 to the corresponding diols.
References and Notes
11. Spectral data for α-12e 1H NMR (270 MHz, CDCl3) δ -0.01 (s, 3H),
0.04 (s, 3H), 0.88 (s, 9H), 1.15 (d, J = 6.60 Hz, 3H), 2.18-2.53 (m, 2H),
3.13 (d, J = 7.72 Hz, 1H), 3.42-3.57 (m, 7H), 4.54-4.69 (m, 4H), 4.79
(d, J = 11.55 Hz, 1H), 5.05 (d, J = 11.88Hz, 1H), 7.06-7.34 (m, 15H),
9.81 (brs); IR (neat) 2922, 1726, 1494, 1452, 1360, 1254, 1066, 861,
836, 778, 734, 698 cm-1; for 13 1H NMR (270 MHz, CDCl3) δ 1.12 (d,
J = 6.60 Hz, 3H), 2.41-2.52 (2H, m), 2.72-2.82 (m, 1H), 3.51-3.81 (m,
1.
Examples of synthesis of β-substituted aldehydes, see: (a) Yamada, K.;
Ojika, M.; Ishigaki, T.; Yoshida, Y.; Ekimoto, H.; Arakawa, M. J. Am.
Chem. Soc. 1993, 115, 11020. (b) Cha, J. K.; Christ, W. J.; Finan, J. M.;
Fujioka, H.; Kishi, Y.; Klein, L. L.; Ko, S. S.; Leder, J.; McWhorter Jr.,
W. W.; Pfaff, K.-P.; Yonaga, M.; Uemura, D.; Hirata, Y. J. Am. Chem.
Soc. 1982, 104, 7369. (c) Sasaki, M.; Matsumori, N.; Maruyama, T.;
Nonomura, T.; Murata, M.; Tachibana, K.; Yasumoto, T. Angew.
Chem., Int. Ed. Engl. 1996, 35, 1672. (d) Bottini, A. T.; Gilchrist, D. G.
Tetrahedron Lett. 1981, 22, 2719. (e) Bezuidenhout, S. C.; Gelderblom,
W. C. A.; Gorst-Allman, C. P.; Horak, R. M.; Marasas, W. F. O.;
Spiteller, G.; Vleggaar, R. J. Chem. Soc., Chem. Commun. 1988, 743.
6H), 4.24 (dd,
J = 9.24, 9.90 Hz, 1H), 4.48-5.05 (m, 6H), 7.14-7.44 (m,
15H); 13C NMR (67.8 MHz, CDCl3) δ 14.5, 28.1, 36.8, 69.0, 73.5,
74.2, 75.4, 77.3, 77.4, 79.6, 84.3, 127.7-128.4 (aromatic), 138.0, 138.2,
170.0; IR (neat) 2920, 1741, 1452, 1204, 1095, 789, 753, 699 cm-1
.