1766 Bull. Chem. Soc. Jpn., 77, No. 9 (2004)
Ó 2004 The Chemical Society of Japan
Table 2. Acylation of 1 with 2 in the Presence of Fe3þ and
The acyl compounds 3a–3f and 5a–5d are known and were
characterized by their spectral data after their isolation.5–13
General Procedure for Mnþ-Mont-Catalyzed Friedel–
Crafts Acylation of 1-Methyl-1-cyclohexene (1) with Acyl
Chloride 2. To a mixture of acyl chloride 2 (3 mmol) and ben-
zene (8 cm3) was added Fe3þ-mont (100 mg, 0.0349 mmol as acid
sites estimated by NH3-TPD) in one portion at room temperature
with magnetic stirring. After the mixture was stirred at the temper-
ature for a few minutes, 1-methyl-1-cyclohexene (1) (0.71 mL, 6
mmol) was added to it and the mixture was stirred vigorously at
room temperature for 2 h. The catalyst was filtered off and rinsed
with Et2O (50 cm3). The solvent in a mixture of the filtrate and the
ethereal washings was removed under the reduced pressure to
leave an oil, which was subjected to silica gel column chromatog-
raphy (eluent, hexane:diethyl ether = 10:1) to give the corre-
sponding 6-acyl-1-methyl-1-cyclohexene 3.
In3þ-Mont
Isolated yield
of 3/%
Entry
2
Mnþ-mont
TONa)
1
2
2a
2b
2c
2d
2e
2f
Fe3þ-mont
Fe3þ-mont
Fe3þ-mont
Fe3þ-mont
Fe3þ-mont
Fe3þ-mont
In3þ-mont
In3þ-mont
In3þ-mont
In3þ-mont
In3þ-mont
In3þ-mont
49
58
38
19
16
20
45
58
34
34
23
27
42
50
33
16
14
17
69
89
52
52
35
42
3
4
5
6
7
2a
2b
2c
2d
2e
2f
8
9
10
11
12
Reaction conditions: 1 (6.0 mmol), 2 (3.0 mmol), Mnþ-mont (100 mg;
Fe3þ-mont, 0.0349 mmol, 0.012 mol amt, In3þ-mont, 0.0197 mmol,
0.0066 mol amt), benzene (8 cm3), rt, 2 h. a) Mol of 3/mol of acid
sites.
References
1
a) M. Balogh and P. Laszlo, ‘‘Organic Chemistry Using
Clays,’’ Springer-Verlag, New York (1993). b) R. L. Augustine,
‘‘Heterogeneous Catalysis for the Synthetic Chemist,’’ Marcel
Dekker, New York (1996). c) R. A. Sheldon and R. S. Downing,
Appl. Catal., A, 189, 163 (1999). d) J. H. Clark, Acc. Chem. Res.,
35, 791 (2002).
O
O
catalyst
+
R
SiMe3
R
Cl
Pr
benzene
r.t., 2 h
Pr
4
2b
5
a: R = SiMe3 c: R = Bu
b: R = Ph d: R = Me
2
a) J. Tateiwa, H. Horiuchi, K. Hashimoto, T. Yamauchi,
and S. Uemura, J. Org. Chem., 59, 5901 (1994). b) J. Tateiwa,
T. Nishimura, H. Horiuchi, and S. Uemura, J. Chem. Soc., Perkin
Trans. 1, 1994, 3367. c) J. Tateiwa, E. Hayama, T. Nishimura,
and S. Uemura, Chem. Lett., 1996, 59. d) J. Tateiwa, A. Kimura,
K. Hashimoto, T. Yamauchi, and S. Uemura, Bull. Chem. Soc.
Jpn., 69, 2361 (1996). e) J. Tateiwa, A. Kimura, M. Takasuka,
and S. Uemura, J. Chem. Soc., Perkin Trans. 1, 1997, 2169.
Scheme 2.
Table 3. Acylation of 4 with 2a or 2b in the Presence of
Mnþ-Mont
Isolated yield
of 5/%
Entry
R
Mnþ-mont
TONa)
1
2
3
4
5
6
7
8
SiMe3
Ph
Bu
Fe3þ-mont
Fe3þ-mont
Fe3þ-mont
Fe3þ-mont
In3þ-mont
In3þ-mont
In3þ-mont
In3þ-mont
54
64
36
9
46
55
31
8
3
a) T. Nishimura, N. Kakiuchi, M. Inoue, and S. Uemura,
Chem. Commun., 2000, 1245. b) N. Kakiuchi, T. Nishimura, M.
Inoue, and S. Uemura, Bull. Chem. Soc. Jpn., 74, 165 (2001).
4 a) J. H. Clark, A. P. Kybett, D. J. Macquarrie, S. J. Barlow,
and P. Landon, J. Chem. Soc., Chem. Commun., 1989, 1353. b) A.
Me
SiMe3
Ph
Bu
31
51
31
9
48
78
48
14
´
Cornelis, C. Dony, P. Laszlo, and K. M. Nsunda, Tetrahedron
Lett., 32, 1423 (1991). c) A. Cornelis, C. Dony, P. Laszlo, and
´
Me
K. M. Nsunda, Tetrahedron Lett., 32, 2901 (1991). d) M. Davister
and P. Laszlo, Tetrahedron Lett., 34, 533 (1993). e) O. Sieskind
and P. Albrecht, Tetrahedron Lett., 34, 1197 (1993). f) L.-J. Li,
B. Lu, T.-S. Li, and J.-T. Li, Synth. Commun., 28, 1439 (1998).
Reaction conditions: 4 (6.0 mmol), 2b (3.0 mmol), Mnþ-mont (100
mg; Fe3þ-mont, 0.0349 mmol, 0.012 mol amt, In3þ-mont, 0.020
mmol, 0.0066 mol amt), benzene (8 cm3), rt, 2 h. a) Mol of 5/mol
of acid sites.
5
6
J. K. Groves and N. Jones, J. Chem. Soc. C, 1968, 2215.
R. Jacquier, M. Mousseron, and S. Boyer, Bull. Soc. Chim.
We have applied this reaction to many other substrates, such
as cyclohexene, ꢀ-pinene, norbornene, trimethyl(vinyl)silane,
and allyltrimethylsilane, but all reactions resulted in a forma-
tion of many unidentified products unfortunately. The treat-
ment of 2-phenylpropene produced only the corresponding
dimer.2e
Fr., 1956, 1653.
7
(1980).
8
P. Beak and K. R. Berger, J. Am. Chem. Soc., 102, 3848
T. Shono, I. Nishiguchi, M. Sasaki, H. Ikeda, and M.
Kurita, J. Org. Chem., 48, 2503 (1983).
E. A. Braude and C. J. Timmons, J. Chem. Soc., 1955,
9
3766.
Experimental
General Procedures. All commercially available organic and
inorganic compounds were used without further purification.
In3þ-mont was newly prepared from KunipiaÒ G (<100 mesh,
10 B. B. Snider and A. C. Jackson, J. Org. Chem., 47, 5393
(1982).
11 C. H. Wong and C. W. Bradshaw, U. S. Patent 5225339
(1993); Chem. Abstr., 119, 115519u (1993).
12 N. Rosas, P. Sharma, C. Alvarez, A. Cabrera, R. Ramirez,
A. Delgado, and H. Arzoumanian, J. Chem. Soc., Perkin Trans. 1,
2001, 2341.
13 A. V. Kel’in, A. W. Sromek, and V. Gevorgyan, J. Am.
Chem. Soc., 123, 2074 (2001).
6 g) and In(NO3)3 3H2O (21.3 g, 60 mmol).2a The amount of acid
ꢄ
sites (Brꢀnsted and Lewis acid sites) was estimated by the temper-
ature-programmed desorption of ammonia gas (NH3-TPD) analy-
sis to be 0.195 mmol gꢂ1. The basal spacing (d001) of In3þ-mont
was estimated by a sharp peak obtained on XRD analysis to be
ꢁ
15.4 A, showing that the compound has an interlayer structure.