Recently, we described the reactivity of amides toward the
halogenating reagent chlorotriphenoxyphosphonium chloride,
i.e., (PhO)3P+ClCl- (henceforth TPPCl2) and proposed a new
and efficient protocol for the mild deacylation of N-monosub-
stituted amides.5a As part of our ongoing studies on the
chemistry and applications of this versatile reagent,5 we wish
to describe here the reactivity of carbonyl compounds such as
ketones and aldehydes toward TPPCl2 and its brominated
analogue TPPBr2, which resulted in a mild synthesis of vinyl
halides and gem-dihalides.
A Mild Synthesis of Vinyl Halides and
gem-Dihalides Using Triphenyl
Phosphite-Halogen-Based Reagents
Alberto Spaggiari, Daniele Vaccari, Paolo Davoli,
Giovanni Torre, and Fabio Prati*
Dipartimento di Chimica, UniVersita` di Modena e Reggio
Emilia, Via Campi 183, 41100 Modena, Italy
By analogy to amides, which are known to form the
corresponding iminochlorides when treated with TPPCl2,5a we
reasoned that such an halogenation on a ketone or aldehyde
carbonyl would also result in a halogen-oxygen exchange to
yield the appropriate vinyl halide (Scheme 1). Encouraging,
though scattered, literature precedents using halogenated phos-
phites6 and phosphines3g,7 hinted at the feasibility of such a
transformation, whose scope and limitations, however, have
never been assessed so far.
ReceiVed June 29, 2006
To this end, a suitable set of ketones and aldehydes was
subjected to TPPCl2 under standard conditions.5 In a typical
procedure, the carbonyl compound was treated at -20 °C with
a freshly prepared solution of TPPCl2 in either dichloromethane
or chloroform in the presence of triethylamine. After warming
to rt overnight, the reaction mixture was refluxed for 2 h to
achieve complete conversion, and the crude residue was purified
by column chromatography. The results are reported in Table
1. Vinyl chlorides were obtained from enolizable ketones in
excellent yields (Table 1, entries 1-12). If formation of E/Z
isomers was possible, poor stereoselectivity was observed (entry
8); in the case of propiophenone (entry 2), however, nearly
exclusive formation of the thermodynamically favored Z isomer8
occurred. When nonequivalent enolizable positions were present,
A new application of (PhO)3P-halogen-based reagents to
the synthesis of vinyl halides and gem-dihalides is described.
Vinyl halides were prepared in good to excellent yields from
enolizable ketones, whereas aldehydes afforded the corre-
sponding gem-dihalides. The halogenation proceeded smoothly
under mild conditions.
The role and importance of halogenated building blocks in
organic synthesis is long established and undisputed, owing to
the wealth of reactions they can easily undergo. Moreover, the
recent development of new strategic reactions for C-C bond
formation, such as the Suzuki-Miyaura, Stille, or Sonogashira
coupling,1 has resulted in the constant need of readily available
halides as starting materials. Vinyl halides, in particular, are
emerging as versatile substrates in a variety of chemical
transformations,2 and their importance as valuable synthons is
increasing accordingly. Typically, vinyl halides are prepared
from carbonyl compounds by reaction with traditional haloge-
nating reagents such as thionyl chloride or phosphorus halides
under prolonged heating in high-boiling solvents3a-f or by means
of multistep procedures that require the isolation of suitable
intermediates, such as vinyl phosphates3g or hydrazones4 using
the Barton procedure and later modifications. The quest for new
synthetic methods, therefore, is still active, and the development
of milder and straightforward reactions for the preparation of
such halogenated derivatives represents a desirable goal.
(3) For a general review, see: (a) Stanforth, S. P. In ComprehensiVe
Organic Functional Group Transformations II; Katritzky, A. R., Taylor,
R. J. K., Eds.; Elsevier: Oxford, 2005; Vol. 2, p 561. Selected examples:
(b) Burkhard, J.; Janku˚, J.; Vodicˇka, L. Coll. Czech. Chem. Commun. 1988,
53, 110. (c) Kamei, K.; Maeda, N.; Ogino, R.; Koyama, M.; Nakajima, N.;
Tatsuoka, T.; Ohno, T.; Inoue, T. Bioorg. Med. Chem. Lett. 2001, 11, 595.
(d) Eszenyi, Y.; T´ıma´r, T.; Seb_ok, P. Tetrahedron Lett. 1991, 32, 827. (e)
Fry, A. J.; Moore, R. H. J. Org. Chem. 1968, 33, 425. (f) Hurd, C. D.;
Hayao, S. J. Am. Chem. Soc. 1954, 76, 5065. (g) Kamei, K.; Maeda, N.;
Tatsuoka, T. Tetrahedron Lett. 2005, 46, 229.
(4) (a) Barton, D. H. R.; O’Brien, R. E.; Sternhell, S. J. Chem. Soc.
1962, 470. (b) Pross, A.; Sternhell, S. Aust. J. Chem. 1970, 23, 989. (c)
Campbell, J. R.; Pross, A.; Sternhell, S. Aust. J. Chem. 1971, 24, 1425. (d)
Barton, D. H. R.; Bashiardes, G.; Fourrey, J.-L. Tetrahedron 1988, 44, 147.
(e) Barton, D. H. R.; Bashiardes, G.; Fourrey, J.-L. Tetrahedron Lett. 1983,
24, 1605. (f) Furrow, M. E.; Myers, A. G. J. Am. Chem. Soc. 2004, 126,
5436.
(5) (a) Spaggiari, A.; Blaszczak, L. C.; Prati, F. Org. Lett. 2004, 6, 3885.
(b) Spaggiari, A.; Davoli, P.; Blaszczak, L. C., Prati, F. Synlett 2005, 661.
(c) Spaggiari, A.; Blaszczak, L. C.; Prati, F. Ars Pharm. 2005, 46, 167. (d)
Spaggiari, A.; Vaccari, D.; Davoli, P.; Prati, F. Synthesis 2006, 995. (e)
Spaggiari, A.; Prati, F. Phosphorus Sulfur Silicon Relat. Elem. 2006, 181,
1825.
(1) (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int.
Ed. 2005, 44, 4442. (b) Espinet, P.; Echavarren, A. M. Angew. Chem., Int.
Ed. 2004, 43, 4704. (c) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron
2002, 58, 9633.
(2) (a) Stanforth, S. P. In ComprehensiVe Organic Functional Group
Transformations II; Katritzky, A. R., Taylor, R. J. K., Eds.; Elsevier:
Oxford, 2005; Vol. 2, p 1025. (b) Dounay, A. B.; Overman, L. E. Chem.
ReV. 2003, 103, 2945. (c) Willis, M. C.; Chauhan, J.; Whittingham, W. G.
Org. Biomol. Chem. 2005, 3, 3094. (d) Durandetti, M.; Pe´richon, J. Synthesis
2004, 3079. (e) Mori, M. In Handbook of Organopalladium Chemistry for
Organic Synthesis; Negishi, E., Ed.; John Wiley & Sons: Hoboken, NJ,
2002; Vol. 2, p 1213. (f) Blum, J.; Gelman, D.; Baidossi, W.; Shakh, E.;
Rosenfeld, A.; Wassermann, B. C.; Frick, M.; Heymer, B.; Schutte, S.;
Wernik, S.; Schumann, H. J. Org. Chem. 1997, 62, 8681.
(6) (a) Allen, N. E.; Boyd, D. B.; Campbell, J. B.; Deeter, J. B.; Elzey,
T. K.; Foster, B. J.; Hatfield, L. D.; Hobbs, J. N., Jr.; Hornback, W. J.;
Hunden, D. C.; Jones, N. D.; Kinnick, M. D.; Morin, J. M., Jr.; Munroe, J.
E.; Swartzendruber, J. K.; Vogt, D. G. Tetrahedron 1989, 45, 1905. (b)
Hoffmann, R. W.; Bovicelli, P. Synthesis 1990, 657.
(7) (a) Shih, C.; Swenton, J. S. J. Org. Chem. 1982, 47, 2825. (b)
Spangler, L. A.; Swenton, J. S. J. Chem. Soc., Chem. Commun. 1986, 828.
(c) Matveeva, E. D.; Feshin, D. B.; Zefirov, N. S. Russ. J. Org. Chem.
2001, 37, 52.
(8) Kropp, P. J.; Crawford, S. D. J. Org. Chem. 1994, 59, 3102.
10.1021/jo061346g CCC: $37.00 © 2007 American Chemical Society
Published on Web 02/13/2007
2216
J. Org. Chem. 2007, 72, 2216-2219