10.1002/anie.201711108
Angewandte Chemie International Edition
COMMUNICATION
Acknowledgements
[8]
[9]
L. Ackermann, Acc. Chem. Res. 2014, 47, 281-295.
For selected examples of C–H alkenylations see: a) W. Ma, H. Dong, D.
Wang, L. Ackermann, Adv. Synth. Catal. 2017, 359, 966-973; b) J. A.
Leitch, P. B. Wilson, C. L. McMullin, M. F. Mahon, Y. Bhonoah, I. H.
Williams, C. G. Frost, ACS Catal. 2016, 6, 5520-5529; c) K. J. Xiao, L.
Chu, J. Q. Yu, Angew. Chem. Int. Ed. 2016, 55, 2856-2860; d) A.
Bechtoldt, C. Tirler, K. Raghuvanshi, S. Warratz, C. Kornhaaß, L.
Ackermann, Angew. Chem. Int. Ed. 2016, 55, 264-267; e) J. Kim, S. W.
Park, M. H. Baik, S. Chang, J. Am. Chem. Soc. 2015, 137, 13448-
13451; f) K. S. Singh, P. H. Dixneuf, Organometallics 2012, 31, 7320-
7323; g) L. Ackermann, J. Pospech, Org. Lett. 2011, 13, 4153-4155; h)
H. Weissman, X. Song, D. Milstein, J. Am. Chem. Soc. 2001, 123, 337-
338; i) a review: S. I. Kozhushkov, L. Ackermann, Chem. Sci. 2013, 4,
886-896, and cited references.
Generous support by the CSC (fellowship to Q.B.), the DFG
(SPP 1807 and Gottfried-Willhelm-Leibniz prize), the Experientia
Foundation of the Czech Republic (fellowship V.K.), and the
COST program (CA15106 CHAOS) is gratefully acknowledged.
Keywords: C–H activation • Density functional theory •
homogeneous catalysis • mechanism • ruthenium
References:
[10] For recent reviews on hydroarylation see: a) Y. Yamamoto, Chem. Soc.
Rev. 2014, 43, 1575-1600; b) Y. Nakao, Chem. Rec. 2011, 11, 242-
251; c) N. A. Foley, J. P. Lee, Z. Ke, T. B. Gunnoe, T. R. Cundari, Acc.
Chem. Res. 2009, 42, 585-597; d) F. Kakiuchi, S. Murai, Acc. Chem.
Res. 2002, 35, 826-834.
[1]
V. Martınez, M. I. Maguregui, R. M. Jiménez, R. M. Alonso, J.
́
Pharmaceut. Biomed. 2000, 23, 459-468.
[2]
[3]
A. Y. Kocaman, B. Guven, Cytotechnology 2016, 68, 947-956.
For recent reviews see: a) J. A. Leitch, C. G. Frost, Chem. Soc. Rev.
2017, DOI: 10.1039/C7CS00496F; b) H. Yi, G. Zhang, H. Wang, Z.
Huang, J. Wang, A. K. Singh, A. Lei, Chem. Rev. 2017, 117, 9016-
9085; c) J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev.
2017, 117, 8754-8786; d) Q.-Z. Zheng, N. Jiao, Chem. Soc. Rev. 2016,
45, 4590-4627; e) R.-Y. Zhu, M. E. Farmer, Y.-Q. Chen, J.-Q. Yu,
Angew. Chem. Int. Ed. 2016, 55, 10578-10599; f) C. Borie, L.
Ackermann, M. Nechab, Chem. Soc. Rev. 2016, 45, 1368-1386; g) B.
Ye, N. Cramer, Acc. Chem. Res. 2015, 48, 1308-1318; h) O. Daugulis,
J. Roane, L. D. Tran, Acc. Chem. Res. 2015, 48, 1053-1064; i) J.
Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369-375; j) G. Rouquet,
N. Chatani, Angew. Chem. Int. Ed. 2013, 52, 11726-11743; k) J.
Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2012, 51,
8960-9009; l) C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215-
1292; m) X. Chen, K. M. Engle, D. H. Wang, J. Q. Yu, Angew. Chem.
Int. Ed. 2009, 48, 5094-5115; n) L. Ackermann, R. Vicente, A. R. Kapdi,
Angew. Chem. Int. Ed. 2009, 48, 9792-9826, and cited references.
Selected examples of C–H functionalizations of benzamides: a) H. W.
Wang, Y. Lu, B. Zhang, J. He, H. J. Xu, Y. S. Kang, W. Y. Sun, J. Q. Yu,
Angew. Chem. Int. Ed. 2017, 56, 7449-7453; b) M. Shang, Q. Shao, S.
Z. Sun, Y. Q. Chen, H. Xu, H. X. Dai, J. Q. Yu, Chem. Sci. 2017, 8,
1469-1473; c) W. Liu, L. Ackermann, Chem. Commun. 2014, 50, 1878-
1881; d) Z. Shi, C. Grohmann, F. Glorius, Angew. Chem. Int. Ed. 2013,
52, 5393-5397; e) Q. Chen, L. Ilies, E. Nakamura, J. Am. Chem. Soc.
2011, 133, 428-429; f) F. W. Patureau, T. Besset, F. Glorius, Angew.
Chem. Int. Ed. 2011, 50, 1064-1067, and cited references.
[11] a) L. Ackermann, Chem. Rev. 2011, 111, 1315-1345; b) S. Santoro, F.
Ferlin, L. Luciani, L. Ackermann, L. Vaccaro, Green Chem. 2017, 19,
1601-1612.
[12] For detailed information, see the Supporting Information.
[13] a) S. I. Gorelsky, D. Lapointe, K. Fagnou, J. Am. Chem. Soc. 2008, 130,
10848-10849; b) a pertinent review: D. L. Davies, S. A. Macgregor, C. L.
McMullin, Chem. Rev. 2017, 117, 8649-8709.
[14] a) D. Zell, M. Bursch, V. Müller, S. Grimme, L. Ackermann, Angew.
Chem. Int. Ed. 2017, 56, 10378-10382; b) W. Ma, R. Mei, G. Tenti, L.
Ackermann, Chem. Eur. J. 2014, 20, 15248-15251.
[15] a) J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev.
Lett. 2003, 91, 146401; b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput.
Chem. 2011, 32, 1456-1465; c) F. Weigend, R. Ahlrichs, Phys. Chem.
Chem. Phys. 2005, 7, 3297-3305; d) A. Schäfer, H. Horn, R. Ahlrichs, J.
Chem. Phys. 1992, 97, 2571-2577.
[16] a) A. Klamt, G. Schuurmann, J. Chem. Soc., Perkin Trans. 2 1993, 799-
805; b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; c) P. J.
Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem.
1994, 98, 11623-11627.
[4]
[17] J. A. Leitch, P. B. Wilson, C. L. McMullin, M. F. Mahon, Y. Bhonoah, I.
H. Williams, C. G. Frost, ACS Catal. 2016, 6, 5520-5529.
[18] For reviews, see: a) S. Grimme, A. Hansen, J. G. Brandenburg, C.
Bannwarth, Chem. Rev. 2016, 116, 5105-5154; b) J. P. Wagner, P. R.
Schreiner, Angew. Chem. Int. Ed. 2015, 54, 12274-12296.
[19] a) L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, S. Grimme,
Phys. Chem. Chem. Phys. 2017, DOI: 10.1039/C7CP04913G; b) L.
Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670-6688.
[20] Y. Zhao, D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 5656-5667.
[5]
For pioneering contributions, see: a) G. Li, L. Wan, G. Zhang, D. Leow,
J. Spangler, J. Q. Yu, J. Am. Chem. Soc. 2015, 137, 4391-4397; b) P.
X. Shen, X. C. Wang, P. Wang, R. Y. Zhu, J. Q. Yu, J. Am. Chem. Soc.
2015, 137, 11574-11577; c) X.-C. Wang, Y. Hu, S. Bonacorsi, Y. Hong,
R. Burrell, J.-Q. Yu, J. Am. Chem. Soc. 2013, 135, 10326-10329; d) M.
Wasa, J.-Q. Yu, J. Am. Chem. Soc. 2008, 130, 14058-14059; e) A
review: K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res.
2012, 45, 788-802, and cited references.
[6]
[7]
Further examples by palladium catalysis: a) Y. Jaiswal, Y. Kumar, R.
Thakur, J. Pal, R. Subramanian, A. Kumar, J. Org. Chem. 2016, 81,
12499-12505; b) A. Deb, S. Bag, R. Kancherla, D. Maiti, J. Am. Chem.
Soc. 2014, 136, 13602-13605; c) J. Park, M. Kim, S. Sharma, E. Park,
A. Kim, S. H. Lee, J. H. Kwak, Y. H. Jung, I. S. Kim, Chem. Commun.
2013, 49, 1654-1656; d) C. S. Yeung, X. Zhao, N. Borduas, V. M. Dong,
Chem. Sci. 2010, 1, 331-336.
a) In November 2017, the prices of rhodium, iridium, palladium, and
ruthenium were 1375, 970, 987, and 125 US $ per troy oz, respectively.
reviews, see: b) W. Ma, P. Gandeepan, J. Li, L. Ackermann, Org. Chem.
Front. 2017, 4, 1435-1467; c) S. Ruiz, P. Villuendas, E. P. Urriolabeitia,
Tetrahedron Lett. 2016, 57, 3413-3432; d) S. De Sarkar, W. Liu, S. I.
Kozhushkov, L. Ackermann, Adv. Synth. Catal. 2014, 356, 1461-1479;
e) B. Li, P. H. Dixneuf, Chem. Soc. Rev. 2013, 42, 5744-5767; f) P. B.
Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879-
5918; g) F. Kakiuchi, N. Chatani, Adv. Synth. Catal. 2003, 345, 1077-
1101.
This article is protected by copyright. All rights reserved.