Discovery of New Polyolefin Catalysts
A R T I C L E S
Scheme 1. High-Throughput Discovery Workflow
conclusion that a limited understanding of the complex relation-
ships between catalyst structure and performance has impeded
progress. For example, it is currently not possible to predict
which new metal-ligand combinations will lead to active
catalyst classes, and which metal-ligand combinations will have
low or no activity. Furthermore, upon discovering a novel
catalytically active metal-ligand combination, catalyst optimi-
zation is always desirable, and yet for any new catalyst class it
is extremely difficult to predict the structural features necessary
to impart the desired improvements in catalyst performance.
Thus, research directed toward the discovery and optimization
of new catalyst classes for commercial applications is an
expensive, time-consuming “trial and error” process with an
uncertain outcome. It is therefore not surprising that high-
throughput synthesis and screening strategies are beginning to
emerge within the field of polyolefin catalysis. In fact, such
strategies are now being adopted for a broad range of catalytic
transformations.7-11 High-throughput approaches offer signifi-
cant advantages over more conventional methods of catalyst
discovery. First, a high-throughput screen can (i) rapidly identify
catalytically active systems, and importantly, identify and reject
inactive systems, and (ii) allow a much broader range of catalysts
candidates and conditions to be evaluated. As a consequence,
time and resources may be directed toward maximizing the
potential of the most promising catalyst candidates rather than
optimizing catalyst structures around less important local
“maxima” in catalyst performance. Additionally, the ability to
generate sufficient quantities of meaningful catalyst performance
data can provide the beneficiary with the opportunity to establish
comprehensive and ultimately predictive structure-property
relationships. Thus, to overcome the limitations of more
conventional methods of polyolefin catalyst discovery, and to
extend the capabilities of our own high-throughput program,
we have designed and implemented a fully integrated, high-
throughput discovery and optimization infrastructure targeted
toward next-generation catalysts for olefin polymerization.
Our approach utilizes a microscale high-throughput primary
screen in which arrays of new metal-ligand combinations are
rapidly surveyed for catalytic activity. The purpose of our
primary screen is to assess the potential of each metal-ligand
combination as a polymerization catalyst for a specifically
targeted application. Catalytically active metal-ligand combina-
tions identified using this primary screening format are then
subjected to a secondary screen in which the catalyst perfor-
mance properties for the targeted application are assessed using
larger scales and more commercially relevant conditions.
Catalysts that meet predetermined performance criteria in these
secondary screens are then subjected to rapid optimization
through the structural elaboration of the newly discovered ligand
class (Scheme 1). Secondary screens are typically intended to
improve upon the catalyst performance, and importantly, to
establish relationships between catalyst structure and catalyst
performance. Rapid polymer characterization techniques have
been developed to accommodate the synthetic throughput and
the nature of the polymer products from our primary and
secondary screens.
(4) See ref 6 and: (a) Baumann, R.; Davis, W. M.; Schrock, R. R. J. Am.
Chem. Soc. 1997, 119, 3830-3831. (b) Liang, L.-C.; Schrock, R. R.; Davis,
W. M.; McConville, D. H. J. Am. Chem. Soc. 1999, 121, 5797-5798. (c)
Scollard, J. D. McConville, D. H. J. Am. Chem. Soc. 1996, 118, 10 008-
10 009. (d) Tshuva, E. Y.; Goldberg, I.; Kol, M.; Goldschmidt, Z. J. Chem.
Soc. Chem. Commun. 2001, 2120-2121. (e) Tshuva, E. Y.; Goldberg, I.;
Kol, M. Goldschmidt, Z. Organometallics, 2001, 20, 3017-3028. (f)
Matsui. S.; Mitani, M.; Saito, J.; Tohi, Y.; Makio, H.; Matsukawa, N.;
Takagi, Y.; Tsuru, K.; Nitabaru, M.; Nakano, T.; Tanaka, H.; Kashiwa,
N.; Fujita, T. J. Am. Chem. Soc. 2001, 123, 6847-6856. (g) Stephan, D.
W.; Gue´rin, F.; Spence, R. E. v. H.; Koch, L.; Gao, X.; Brown, S. J.;
Swabey, J. W.; Wang, Q.; Xu, W.; Zoricak, P.; Harrison, D. G. Organo-
metallics, 1999, 18, 2046-2048.
(5) (a) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. ReV. 2000, 100, 1169-
1203. (b) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc.
1995, 117, 6414-6415. (c) Small, B. L.; Brookhart, M.; Bennett, A. M.
A. J. Am. Chem. Soc. 1998, 120, 4049-4050. (d) Britovsek, G. J. P.;
Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; McTavish, S. J.; Solan,
G. A.; White, A. J. P.; Williams, D. J. J. Chem. Soc. Chem. Commun.
1998, 849-850.
(6) For reviews on nonmetallocene olefin polymerization catalysts, see: (a)
Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int. Ed.
Engl. 1999, 38, 428-447. (b) Gibson, V. C.; Spitzmesser, S. K. Chem.
ReV. 2002, ASAP Web Release Date Dec 17.
(7) For recent reviews, see: (a) Jandeleit, B.; Schaefer, D. J.; Powers, T. S.;
Turner, H. W.; Weinberg, W. H. Angew. Chem., Int. Ed. Engl. 1999, 38,
2494-2532. (b) Wennemers, H. Combinatorial Chemistry & High Through-
put Screening 2001, 4, 273-285. (c) Gennari, F.; Seneci, P.; Miertus, S.
Catal. ReV.-Sci. Eng. 2000, 42(3), 385-402. (d) Gennari, C.; Nestler, H.
P.; Piarulli, U.; Salom, B. Liebigs Ann./Recueil 1997, 637-647. (e) Shimizu,
K. D.; Snapper, M. L.; Hoveyda, A. H. Chem. Eur. J. 1998, 4(10), 1885-
1889. (f) Crabtree, R. H. J. Chem. Soc. Chem. Commun. 1999, 1611-
1616.
(8) (a) Weinberg, W. H.; McFarland, E.; Goldwasser, I.; Boussie, T.; Turner,
H.; van Beek, J. A. M.; Murphy, V.; Powers, T. U.S. Patents 6,030,917,
2000; and 6,248,540, 2001. (b) Weinberg, W. H.; McFarland, E.; Gold-
wasser, I.; Boussie, T.; Turner, H. W.; van Beek, J. A. M.; Murphy, V.;
Powers, T. Eur. Patent Appl. 978-499-A2, 2000.
(9) High-throughput strategies for the discovery of polyolefin catalysts are
limited to a few examples; see: (a) Tian, J.; Coates, G. W. Angew. Chem.,
Int. Ed. Engl. 2000, 39, 3626-3629. (b) Stork, M.; Herrmann, A.; Nemnich,
T.; Klapper, M.; Mu¨llen, K. Angew. Chem., Int. Ed. Engl. 2000, 39, 4367-
4369. (c) Boussie, T. R.; Coutard, C.; Turner, H.; Murphy, V.; Powers, T.
S. Angew. Chem., Int. Ed. Engl. 1998, 37, 3272-3275. (d) Boussie, T. R.;
Murphy, V.; Hall, K. A.; Dales, C.; Petro, M.; Carlson, E.; Turner, H. W.;
Powers, T. S. Tetrahedron 1999, 55, 11699-11710. (e) Hinderling, C.;
Chen. P. Angew. Chem., Int. Ed. Engl. 1999, 38, 2253-2256. (f) Jones, D.
J.; Gibson, V. C.; Green, S. M.; Maddox, P. J. J. Chem. Soc. Chem.
Commun. 2002, 1038-1039.
(10) For high-throughput screening techniques, see: (a) Connolly, A. R.;
Sutherland, J. D. Angew. Chem., Int. Ed. 2000, 39, 4268-4271. (b)
Holzwarth, A.; Schmidt, H.-W.; Maier, W. F. Angew. Chem., Int. Ed. Engl.
1998, 37, 2644-2647. (c) Taylor, S. J.; Morken, J. P. Science 1998, 280,
267-270. (d) Stambuli, J. P.; Stauffer, S. R.; Shaughnessy, K. H.; Hartwig,
J. F. J. Am. Chem. Soc. 2001, 123, 2677-2678.
Herein, we report our first results in this area, including the
design of a 1-octene primary screen, its validation through the
use of a commercially relevant olefin polymerization catalyst,
and the subsequent discovery of a new 1-octene polymerization
catalyst using the primary screening methodology. Using our
secondary screen, we then performed high-temperature ethylene-
(11) For high-throughput catalyst discovery, see ref 7 and: (a) Francis, M. B.;
Jacobsen, E. N. Angew. Chem., Int. Ed. Engl. 1999, 38, 937-941. (b)
Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901-4902.
(c) Porte, A. M.; Reibenspies, J.; Burgess, K. J. Am. Chem. Soc. 1998,
120, 9180-9187. (d) Gilbertson, S. R.; Collibee, S. E.; Agarkov, A. J.
Am. Chem. Soc. 2000, 122, 6522-6523. (e) Loch, J. A.; Crabtree, R. H.
Pure Appl. Chem. 2001, 73, 119-128. (f) Dahmen, S.; Bra¨se, S. Synthesis
2001, 10, 1431-1449.
9
J. AM. CHEM. SOC. VOL. 125, NO. 14, 2003 4307