100), 722.2 ([M–pyr–R–]1, 20); anal. calc. for C68H50BN5: C,
86.16; H, 5.32; N, 7.39. Found: C, 85.95; H, 5.12; N, 7.27%.
Acknowledgements
The Centre National de la Recherche Scientifique and the
French tax payer are gratefully acknowledged for financial
support.
References
w In our hands, no obvious degradation of the novel dyes has been
observed by treatment with water, protic solvents, acids or strong
bases in daylight. For instance, these dyes are stable in hot piperidine
overnight. No particular precautions have to be taken during the
work-up of these compounds, or during chromatography, crystal-
lization or spectroscopic studies. Compounds could be stored at rt in
air and in daylight. However, some decomposition might occur in
excess Fꢀ anions or strong oxidants. This statement of stability is
based on current observations.
Scheme 3 a: ArCRCLi, THF, 0–20 1C.
z X-ray crystal data for 4 at 293 K. Formula sum: C38H39BN2,
formula weight: 534.52, crystal system: triclinic, space group: P-1
(no. 2). Unit cell dimensions: a = 13.236(5), b = 13.934(5), c =
18.545(5) A, a = 102.109(5), b = 90.215(5), g = 112.416(5)1, unit cell
ꢀ78 1C. The dark green anion was allowed to slowly warm up
0 1C and was then transferred via cannula to a solution of 2,6-
diethyl-4,4-difluoro-1,3,5,7-tetramethyl-8-(2:20:60:200-terpyridin-
40-yl)-4-bora-3a,4a-diaza-s-indacene14 (0.048 g, 0.089 mmol)
in 10 mL of THF. Complete consumption of the starting
material was observed after 10 min. The solution was then
readily quenched with water and the compound extracted with
dichloromethane. Column chromatography (alumina,
CH2Cl2/cyclohexane 20 : 80) followed by recrystallization
(CH2Cl2/cyclohexane) gave the desired compound 16 (0.025
g, 30% yield). 1H NMR (CDCl3, 400 MHz) (d/ppm): 8.82 (d, 2
H, 3J = 9.0 Hz), 8.75–8.69 (m, 6 H), 8.22–7.98 (m, 16 H), 7.91
volume: 3075.05(180) A3, Z = 4, density (calculated): 1.153 g cmꢀ3
.
Reflections collected/unique 15816/6224 (Rint = 0.0304), data/re-
straints/parameters 6224/4/768. Final R indices [I 4 2s(I)]: R1 =
0.0587, wR2 = 0.1565; R indices (all data): R1 = 0.0881, wR2 =
0.1809. CCDC 606381. For crystallographic data in CIF or other
electronic format see DOI: 10.1039/b604830g.
y Indeed, there are two independent molecules in the asymmetric unit
of the triclinic cell (Z = 4). If the rms coordinate difference between
boradiazaindacene moieties is only 0.136 A, the main differences
between them mainly reside in the relative orientations of the naphtyl
groups.
3
4
(dt, 2H, J = 8.0, J = 2.0 Hz), 7.37 (m, 2 H), 3.15 (s, 6 H),
2.45 (q, 4 H, 3J = 7.6 Hz), 1.57 (s, 6 H) and 1.09 (t, 6 H, 3J =
7.5 Hz); 13C{1H} NMR (CDCl3, 75 MHz) (d/ppm): 156.4,
155.7, 154.6, 149.5, 147.1, 137.0, 136.3, 133.6, 132.3, 131.5,
131.4, 130.5, 129.9, 128.6, 128.0, 127.6, 127.5, 126.5, 126.1,
125.3, 125.2, 124.75, 124.70, 124.6, 124.3, 121.5, 121.3, 120.8,
17.2, 15.0, 14.7 and 12.9; 11B{1H} NMR (CDCl3, 128 MHz)
(d/ppm): ꢀ8.92 (s); UV-vis (CH2Cl2) (l/nm (e/Mꢀ1 cmꢀ1)):
526 (70 000), 370 (103 000), 358 (78 000), 285 (111 400), 275
(74 400) and 248 (106 000); IR (KBr) (n/cmꢀ1): 2961 (s), 2164
(m), 1582 (s), 1402 (s), 1178 (s), 978 (s) and 845 (s); FAB1 (m/z
(nature of peak, relative intensity (%))): 948.2 ([M þ H]1,
1 Special issue on Fluorescent Sensors: J. Mater. Chem., 2005, 15,
ed. A. P. Silva and P. Tecilla, pp. 2617–2976.
2 Biomedical Sensors, Fundamentals, and Applications, ed. N. H.
Norton, Noys Publications, Park Ridge, New York, 1982.
3 Organic Light-Emitting Devices, ed. J. Shinar, Springer, New York,
2004.
4 J. Herbich and A. Kapturkiewicz, J. Am. Chem. Soc., 1998, 120,
1014.
5 A. Wiessner, G. Huttmann, W. Kuhnle and H. Staerk, J. Phys.
¨
Chem., 1995, 99, 14923.
¨
6 A. Onkelinx, F. C. De Schryver, L. Viaene, M. Van der Aueraer,
K. Iwai, M. Yamamoto, M. Ichikawa, M. Masuhara, M. Maus
and W. Rettig, J. Am. Chem. Soc., 1996, 118, 2892.
7 (a) J. Herbich and A. Kapturkiewicz, Chem. Phys., 1993, 170, 221;
(b) A. Harriman, M. Hissler and R. Ziessel, Phys. Chem. Chem.
Phys., 1999, 1, 4203; (c) M. Hissler, A. Harriman, A. Khatyr and
R. Ziessel, Chem.–Eur. J., 1999, 5, 3366.
8 M. Glasbeek and H. Zhang, Chem. Rev., 2004, 104, 1929 and
references therein.
9 (a) M. Kollmannsberger, K. Rurack, U. Resch-Genger and J.
Daub, J. Phys. Chem. A, 1998, 102, 10211; (b) C.-W. Wan, A.
Burghart, J. Chen, F. Bergstrom, L. B.-A. Johanson, M. F.
¨
Wolford, T. G. Kim, M. R. Topp, R. M. Hochstrasser and K.
Burgess, Chem.–Eur. J., 2003, 9, 4430; (c) G. Ulrich and R. Ziessel,
J. Org. Chem., 2004, 69, 2070.
10 (a) U. H. F. Bunz, Chem. Rev., 2000, 100, 1605; (b) J. M. Tour,
Acc. Chem. Res., 2000, 33, 791.
11 Y. Yamaguchi, T. Tanaka, S. Kobayashi, T. Wakamiya, Y.
Matsubara and Z.-I. Yoshida, J. Am. Chem. Soc., 2005, 127,
9332.
12 Y. Yamaguchi, T. Ochi, T. Wakamiya, Y. Matsubara and Yoshi-
da, Org. Lett., 2006, 8, 717.
Fig. 3 Absorption spectra (dotted) and emission spectra (full line) for
compounds 11 and 13. All spectra were measured in CH2Cl2 at rt.
13 (a) R. P. Haugland and H. C. Kang, US Pat., US 4,774,339, 1998;
(b) T. Rohand, M. Baruah, W. Qin, N. Boens and W. Dehaen,
ꢁc
This journal is the Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2006
New J. Chem., 2006, 30, 982–986 | 985