H. T. Al-Masri et al. / Tetrahedron 60 (2004) 333–339
339
192.9 (8%, Mþ2Ph–NH–2CH3), 180.9 (100%, Mþ2Ph–
References and notes
NH–NMe2), 90.9 (20%, C7Hþ7 ), 76.9 (38%, C6H5þ), 50.9
(18%, C4Hþ3 ). Found: C, 82.60; H, 8.13; N, 8.62%. Calcd for
C22H24N2: C, 83.50; H, 7.64; N, 8.85%.
1. (a) Williard, P. G. Comprehensive organic synthesis;
Pergamon: New York, 1991; Vol. 1, p 1. (b) Wakefield, B. J.
The chemistry of organolithium compounds; Pergamon: New
York, 1974. (c) Wakefield, B. J. Organolithium methods;
Academic: London, 1998.
3.1.6. 2-(2-Dimethylaminophenyl)-1-phenylethanol (6).
The reaction was carried out by the same procedure as
described for 4, except that 8.7 g (0.082 mol) of benzal-
dehyde instead of benzophenone was used and that the
colorless crystals were obtained from toluene at 25 8C in
70% yield. Mp 152–157 8C. 1H NMR (CDCl3, d/ppm): 2.78
(s, 6H, N(CH3)2), 3.21 (t, 3JH–H¼12 Hz, 1H, CH), 3.10 (d,
3JH–H¼12 Hz, 1H, CH2), 4.94 (d, 3JH–H¼12 Hz, 1H, CH2),
2. Jones, F. N.; Zinn, M. F.; Hauser, C. R. J. Org. Chem. 1963,
28, 663.
3. Puterbaugh, W. H.; Hauser, C. R. J. Am. Chem. Soc. 1963, 85,
2467.
4. Hay, J. V.; Harris, T. M. Org. Synth. 1973, 53, 56.
5. Wittig, G.; Merkle, W. Chem. Ber. 1942, 75, 1491.
6. Lepley, A. R.; Khan, W. A.; Giumanini, A. B.; Giumanini,
A. G. J. Org. Chem. 1966, 31, 2047.
7.02 (s, 1H, OH), 7.24–7.39 (m, 9H, C6H4 and C6H5). 13
C
NMR (CDCl3, d/ppm): 44.6 (s, CH2), 45.6 (s, N(CH3)2),
65.9 (s, CH), 76.5 (s, C–O), 120.8 (s, C6 in C6H4), 126.0 (s,
C4 in C6H4), 126.3 (s, C3 in C6H4), 127.6 (s, C5 in C6H4),
128.6 (s, p-C in C6H5), 129.2 (s, o-C in C6H5), 132.7 (s, m-C
in C6H5), 135.6 (s, C2 in C6H4), 146.1 (s, C1 in C6H4), 152.6
(s, ipso-C in C6H5). IR (KBr): 3366 br., 3060 w, 2940 m,
2859 m, 2829 m, 2786 s, 1951 w, 1597 s, 1580 vs, 1492 vs,
1451 vs, 1293 vs, 1267 vs, 1156 vs, 1100 vs, 1057 vs, 1005
vs, 939 s, 863 vs, 845 w, 759 vs, 699 vs, 635 s cm21. MS:
m/z 241.3 (18%, Mþ), 164.9 (5%, Mþ2Ph), 134.0 (100%,
Mþ2Ph–2CH3), 118.0 (22%, Mþ2Ph–NMe2), 90.9 (20%,
C7Hþ7 ), 76.9 (15%, C6H5þ), 50.9 (8%, C4Hþ3 ). Found: C
79.30; H 8.09; N 6.48%. Calcd for C16H19NO: C 79.62; H
7.87; N 5.81%.
7. Jones, F. N.; Vaulx, R. L.; Hauser, C. R. J. Org. Chem. 1963,
28, 3461.
8. Klein, K. P.; Hauser, C. R. J. Org. Chem. 1967, 32, 1479.
9. Jones, F. N.; Hauser, C. R. J. Org. Chem. 1962, 27, 4389.
10. Ludt, R. E.; Crowther, G. P.; Hauser, C. R. J. Org. Chem.
1970, 35, 1288.
11. Giumanini, A. G.; Giumanini, A. B.; Lepley, A. R. Chim. Ind.
(Milan) 1969, 51, 2.
´
12. (a) Bauer, W.; v. Rague Schleyer, P. J. Am. Chem. Soc. 1989,
´
111, 7191. (b) Saa, J. M.; Martorell, G.; Frontera, A. J. Org.
Chem. 1996, 61, 5194. (c) Rennels, R. A.; Maliakal, A. J.;
Collum, D. B. J. Am. Chem. Soc. 1998, 120, 421. (d) Clark,
R. D.; Jahangir, A. Organic reactions; Paquette, L. A., Ed.;
1995; Vol. 47, Chapter 1.
3.1.7. (2-Diethylaminophenyl)diphenylmethanol (7). The
reaction was carried out by the same procedure as described
for 1, except that 12.5 g (0.082 mol) of N,N-diethylaniline
was used instead of N,N-dimethylaniline and that the
colorless crystals were obtained from diethyl ether at
13. (a) Al-Masri, H. T.; Sieler, J.; Hey-Hawkins, E. Appl.
Organomet. Chem. 2003, 17, 63. (b) Al-Masri, H. T.; Sieler
J.; Hey-Hawkins, E. Appl. Organomet. Chem. 2003, 17, 641.
14. Al-Masri, H. T. PhD Thesis, Leipzig University, 2003.
15. Agashe, M. S.; Jose, C. I. J. Chem. Soc., Faraday Trans. 2
1977, 73, 1232.
1
210 8C in 20% yield. Mp 165–170 8C. H NMR (CDCl3,
3
d/ppm): 0.92 (t, JH–H¼8 Hz, 6H, N(CH2CH3)2), 2.61 (q,
3JH–H¼8 Hz, 2H, N(CH2CH3)2), 2.77 (q, 3JH–H¼8 Hz, 2H,
N(CH2CH3)2), 6.75–7.29 (m, 14H, C6H4 and C6H5), 10.50
(s, 1H, OH). 13C NMR (CDCl3, d/ppm): 12.5 (s,
N(CH2CH3)2), 49.1 (s, N(CH2CH3)2), 83.3 (s, C–O),
111.8 (s, C6 in C6H4), 115.4 (s, C4 in C6H4), 124.4 (s, C3
in C6H4), 124.9 (s, C5 in C6H4), 126.8 (s, p-C in C6H5),
128.3 (s, o-C in C6H5), 132.1 (s, m-C in C6H5), 144.7 (s, C2
in C6H4), 146.0 (s, C1 in C6H4), 148.1 (s, ipso-C in C6H5).
IR (KBr): 3060–2845 br., 1951 w, 1596 s, 1567 w, 1427 vs,
1385 vs, 1361 s, 1295 s, 1218 s, 1161 vs, 1115 vs, 1102 s,
1027 vs, 938 s, 833 vs, 759 vs, 699 vs, 636 vs, 596 s, 564 m,
523 m, 490 m, 452 m cm21. MS: m/z 331.3 (34%, Mþ),
316.2 (15%, Mþ2CH3), 298.2 (5%, Mþ2CH3–OH), 254.2
(45%, Mþ2Ph), 238.1 (47%, Mþ2Ph–CH3), 210.2 (15%,
16. Agashe, M. S.; Jose, C. I. J. Chem. Soc., Faraday Trans. 2
1977, 73, 1227.
17. Musso, H.; Sandrock, G. Chem. Ber. 1964, 97, 2076.
18. Rettig, S. J.; Trotter, J. Can. J. Chem. 1976, 54, 3130.
19. Kliegel, W.; Lubkowitz, G.; Rettig, S. J.; Trotter, J. Can.
J. Chem. 1992, 70, 2033.
20. Staab, H. A.; Saupe, T. Angew. Chem. 1988, 100, 895.
21. Saiz, A. L. L.; Force-Force, C. J. Mol. Struct. 1990, 238, 367.
22. Rettig, S. J.; Trotter, J. Can. J. Chem. 1973, 51, 1288.
23. Sheldrick, G. M. SADABS—a Program for Empirical
¨
Absorption Correction, Gottingen, 1998.
24. SHELXTL PLUS, XS: Program for Crystal Structure Solution,
XL: Program for Crystal Structure Determination, XP:
Interactiv Molecular Graphics; Siemens Analyt. X-ray Inst.
Inc., 1990.
Mþ2Ph–CH3–Et),
165.0
(13%,
Mþ2Ph–OH–
N(CH2CH3)2), 76.9 (64%, C6Hþ5 ), 50.9 (20%, C4H3þ).
Found: C, 82.40; H, 7.54; N, 3.99%. Calcd for C23H25NO:
C, 83.34; H, 7.60; N, 4.23%.