1182
derivatives in a totally regio- and diastereoselective way. Further application of this methodology to
synthesize biological compounds is actually in progress in our laboratory.
References
1. Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed. Engl. 1998, 37, 2580–2627.
2. Matecka, D.; Rothman, R. B.; Radesca, L.; De Costa, B. R.; Dersch, C. M.; Partilla, J. S.; Pert, A.; Glowa, J. R.; Wojnicki,
H. E.; Rice, K. C. J. Med. Chem. 1996, 39, 4704–4716.
3. Hirokawa, Y.; Morie, T.; Yamazaki, H.; Yoshida, N.; Kato, S. Bioorg. Med. Chem. Lett. 1998, 8, 619–624.
4. Rezler, E. M.; Fenton, R. R.; Esdale, W. J.; McKeage, M. J.; Russell, P. J.; Hambley, T. W. J. Med. Chem. 1997, 40,
3508–3515.
5. Robl, J. A.; Sieber-McMaster, E.; Sulsky, R. Tetrahedron Lett. 1996, 37, 8985–8988.
6. (a) Martin-Martinez, M.; Bartolomé-Nebreda, J. M.; Gomez-Monterrey, I.; Gonzalez-Munich, R.; Garcia-Lopez, M. T.;
Ballaz, S.; Barber, A.; Fortuno, A.; Del Rio, J.; Herranz, R. J. Med. Chem. 1997, 40, 3402–3407. (b) Laschat, S.; Fröhlich,
R.; Wibbeling, B. J. Org. Chem. 1996, 61, 2829–2838. (c) Armour, D. R.; Chung, K. M. L.; Congreve, M.; Evans, B.;
Guntrip, S.; Hubbard, T.; Kay, C.; Middlemiss, D.; Mordaunt, J. E.; Pegg, N. A.; Vinader, M. V.; Ward, P.; Watson, S. P.
Bioorg. Med. Chem. Lett. 1996, 6, 1015–1020.
7. (a) Bonin, M.; Grierson, D. S.; Royer, J.; Husson, H.-P. Org. Synth. 1991, 70, 54–59. (b) Froelich, O.; Desos, P.; Bonin, M.;
Zhu, J.; Quirion, J.-C.; Husson, H.-P. J. Org. Chem. 1996, 61, 6700–6705.
8. Satisfactory spectral and analytical data were obtained for all new compounds.
9. Typical procedure for imine reduction. Preparation of 11b: To a cooled suspension of LiAlH4 (0.8 g, 20.9 mmol) in ether
(50 mL, −10°C) was carefully added a solution of phenylimine 6b (0.81 g, 2.67 mmol) in ether (4 mL). After stirring the
mixture for 3 h, NaOH (1N, 1.6 mL) was added dropwise, followed by H2O (2.4 mL). After filtration and removal of the
solvent under reduced pressure, the oily residue was purified by flash chromatography (SiO2, CH2Cl2/MeOH 9:1) to give
aminoalcohol 11b as a colorless oil in 91% yield (0.75 g, 2.42 mmol).
10. Diamine (+) 12b. Colorless oil. [α]D= +14 (c=1, MeOH). 1H NMR (300 MHz, CDCl3) (δ, ppm; J, Hz): 2.1–1.5 (6H, m),
2.83 (2H, m, 2H7), 3.03 (1H, ddd, J=9.2, 7.8, 4.1, H3), 3.21 (1H, d, J=9.2, H2), 7.1–7.4 (5H, m, Ph); 13C NMR (75.43 MHz,
CDCl3, δ, ppm): 21.8, 29.5, 35.6 (C4, C5, C6 not assigned), 49.2 (C7), 58.9 (C3), 74.1 (C2), 127.5, 128.3, 128.7, 144.3 (Ph).
Anal. calcd for C12H18N2·2HCl,0.5H2O: C 52.95, H 7.78, N 10.29; found C 52.65, H 7.49, N 10.11.
11. Williams, R. M.; Zhai, W.; Aldous, D. J. J. Org. Chem. 1992, 57, 6527–6532.
12. Chang, Z. Y.; Coates, R. M. J. Org. Chem. 1990, 55, 3475–3483.
13. Diamine (+) 12c. Pale yellow oil. [α]D= +7 (c=0.45, MeOH). 1H NMR (300 MHz, CDCl3) (δ, ppm; J, Hz): 1.80–1.28 (6H,
0
0
m), 2.47 (1H, ddd, J=13.7, 8.4, 3.8, H3), 3.64 (d, J=9, H2), 6.06 (1H, J=3.1, 1.9, H4 ), 6.12 (1H, J=3.2, H3 ), 7.16 (d, J=1.3,
0
H5 ); 13C NMR (75.43 MHz, CDCl3, δ, ppm): 21.6, 28.8, 30.7, (C4, C5, C6 not assigned), 45.6 (C7), 54.6 (C3), 58.5 (C2),
0
0
0
0
108.3, 110.3 (C3 , C4 ), 142.5 (C5 ), 151.1 (C2 ); HRMS calcd for C10H16N20: 180.1262, found: 180.1262.