Full Paper
[31] R. Kulmaczewski, H. J. Shepherd, O. Cespedes, M. A. Halcrow, Inorg. Chem.
2014, 53, 9809–9817.
[32] M. Bernien, H. Naggert, L. M. Arruda, L. Kipgen, F. Nickel, J. Miguel, C. F.
Hermanns, A. Krüger, D. Krüger, E. Schierle, E. Weschke, F. Tuczek, W.
Kuch, ACS Nano 2015, 9, 8960–8966.
[33] W. A. Baker Jr., H. M. Bobonich, Inorg. Chem. 1964, 3, 1184–1188.
[34] E. König, K. Madeja, K. J. Watson, J. Am. Chem. Soc. 1968, 90, 1146–1153.
[35] E. W. Müller, H. Spiering, P. Gütlich, Chem. Phys. Lett. 1982, 93, 567–571.
[36] S. O. Schmidt, unpublished results.
sen-Bialas for synthetic work and Stephanie Pehlke for record-
ing resonance Raman measurements.
Keywords: Iron · Spin crossover · Magnetic properties ·
Moessbauer spectroscopy · Resonance Raman spectroscopy ·
LIESST
[37] M.-L. Boillot, S. Chantraine, J. Zarembowitch, J.-Y. Lallemand, J. Prunet,
New J. Chem. 1999, 23, 179–183.
[38] C. P. Köhler, R. Jakobi, E. Meissner, L. Wiehl, H. Spiering, P. Gütlich, J. Phys.
Chem. Solids 1990, 51, 239–247.
[39] A. Hauser, J. Jeftic, H. Romstedt, R. Hinek, H. Spiering, Coord. Chem. Rev.
1999, 190–192, 471–491.
[40] H. Spiering, T. Kohlhaas, H. Romstedt, A. Hauser, C. Bruns-Yilmaz, J. Kusz,
P. Gütlich, Coord. Chem. Rev. 1999, 190–192, 629–647.
[41] J. A. Real, A. B. Gaspar, V. Niel, M. C. Munoz, Coord. Chem. Rev. 2003, 236,
121–141.
[42] H. Naggert, J. Rudnik, L. Kipgen, M. Bernien, F. Nickel, L. M. Arruda, W.
Kuch, C. Näther, F. Tuczek, J. Mater. Chem. C 2015, 3, 7870–7877.
[43] P. Guionneau, M. Marchivie, G. Bravic, J.-F. Letard, D. Chasseau, Top. Curr.
Chem. 2004, 234, 97–128.
[1] L. Cambi, L. Szegö, Ber. Dtsch. Chem. Ges. 1931, 64, 2591.
[2] P. Gütlich, A. Hauser, H. Spiering, Angew. Chem. Int. Ed. Engl. 1994, 33,
202024, 2024–2054–2141; Angew. Chem. 1994, 106, 2109; P. Gütlich, H. A.
Goodwin, Spin Crossover in Transition Metal Compounds I–III, Top. Curr.
Chem., Springer, Berlin, 2004, vol. 233–235; P. Gütlich, H. A. Goodwin,
Top. Curr. Chem. 2004, 233–235.
[3] O. Kahn, J. Kröber, C. Jay, Adv. Mater. 1992, 4, 718–728.
[4] S. Sanvito, Chem. Soc. Rev. 2011, 40, 3336–3355.
[5] J. Letard, P. Guinneau, L. Goux-Capes, Top. Curr. Chem. 2004, 235, 221–
249.
[6] A. Bousseksou, G. Molnar, L. Salmon, W. Nicolazzi, Chem. Soc. Rev. 2011,
40, 3313–3335.
[7] M. C. Munoz, J. A. Real, Coord. Chem. Rev. 2011, 255, 2068–2093.
[8] M. A. Halcrow, Spin-Crossover Materials – Properties and Applications,
Wiley-VCH, Weinheim, Germany, 1st ed., 2013.
[44] J.-F. Letard, J. Mater. Chem. 2006, 16, 2550–2559.
[45] A. Ozarowski, B. R. McGarvey, A. B. Sarkar, J. E. Drake, Inorg. Chem. 1988,
27, 628–635; B. Gallois, J. A. Real, C. Hauw, J. Zarembowitch, Inorg. Chem.
1990, 29, 1152–1158; M. Konno, M. Mikami-Kido, Bull. Chem. Soc. Jpn.
1991, 64, 339–345; J. A. Real, B. Gallois, T. Granier, F. Suez-Panama, J.
Zarembowitch, Inorg. Chem. 1992, 31, 4972–4979; J. A. Real, M. C. Munoz,
E. Andres, T. Granier, B. Gallois, Inorg. Chem. 1994, 33, 3587–3594; J.-F.
Letard, S. Montant, P. Guionneau, P. Martin, A. Le Calves, E. Freysz, D.
Chasseau, R. Lapouyade, O. Kahn, Chem. Commun. 1997, 745–746; J.-F.
Letard, P. Guionneau, E. Codjovi, O. Lavastre, G. Bravic, D. Chasseau, O.
Kahn, J. Am. Chem. Soc. 1997, 119, 10861–10862; Z. J. Zhong, J. Q. Tao,
Z. Yu, C. Y. Dun, Y. L. Liu, X. Z. You, J. Chem. Soc., Dalton Trans. 1998,
327–328; N. Moliner, M. C. Munoz, S. Letard, J.-F. Letard, X. Solans, R.
Burriel, M. Castro, O. Kahn, J. A. Real, Inorg. Chim. Acta 1999, 291, 279–
288; J. Klingele, D. Kaase, M. Schmucker, Y. Lan, G. Chastanet, J.-F. Letard,
Inorg. Chem. 2013, 52, 6000–6010.
[46] C. Brotschi, G. Mathis, C. J. Leumann, Chem. Eur. J. 2005, 11, 1911–1923.
[47] S. H. Wadman, Y. M. van Leeuwen, R. W. A. Havenith, G. P. M. van Klink,
G. van Koten, Organometallics 2010, 29, 5635–5645.
[48] B. W. Michel, L. D. Steffens, M. S. Sigma, J. Am. Chem. Soc. 2011, 133,
8317–8325.
[49] E. V. Brown, G. R. Granneman, J. Am. Chem. Soc. 1975, 97, 621–627.
[50] Y. Uchida, R. Kajita, Y. Kawasaki, S. Oae, Phosphorus Sulfur Silicon Relat.
Elem. 1994, 93–94, 405–409.
[51] O. S. Wenger, L. M. Henling, M. W. Day, J. R. Winkler, H. B. Gray, Polyhedron
2004, 23, 2955–2958.
[9] O. Kahn, C. J. Martinez, Science 1998, 279, 44–48.
[10] S. Decurtins, P. Gütlich, C. P. Köhler, H. Spiering, A. Hauser, Chem. Phys.
Lett. 1984, 105, 1–4.
[11] M.-L. Boillot, J. Zarembowitch, A. Sour, Top. Curr. Chem. 2004, 234, 261–
276.
[12] S. Thies, H. Sell, C. Schütt, C. Bornholdt, C. Näther, F. Tuczek, R. Herges,
J. Am. Chem. Soc. 2011, 133, 16243–16250; S. Thies, C. Bornholdt, F.
Köhler, F. Soennichsen, C. Näther, F. Tuczek, R. Herges, Chem. Eur. J. 2010,
16, 10074–10083.
[13] S. Venkataramani, U. Jana, M. Dommaschk, F. D. Sönnichsen, F. Tuczek,
R. Herges, Science 2011, 331, 445–448.
[14] E. Ludwig, H. Naggert, M. Kalläne, S. Rohlf, S. Kröger, A. Bannwarth, A.
Quer, K. Rossnagel, L. Kipp, F. Tuczek, Angew. Chem. Int. Ed. 2014, 53, 11,
3019–3023; Angew. Chem. 2014, 126, 3063–3067.
[15] A. Witt, F. W. Heinemann, M. M. Khusniyarov, Chem. Sci. 2015, 6, 4599–
4609.
[16] A. Hauser, Coord. Chem. Rev. 1991, 111, 275–290.
[17] A. Hauser, C. Enachescu, M. Lawson Daku, A. Vargas, N. Amstutz, Coord.
Chem. Rev. 2006, 250, 1642–1652.
[18] Y. Hasegawa, S. Kume, H. Nishihara, Dalton Trans. 2009, 280–284.
[19] M. Milek, F. W. Heinemann, M. M. Khusniyarov, Inorg. Chem. 2013, 52,
11585–11592.
[20] N. Matsumoto, S. Ohta, C. Yoshimura, A. Ohyoshi, S. Kohata, H. Okawa,
Y. Maeda, J. Chem. Soc., Dalton Trans. 1985, 2575–2584.
[21] A. Sour, M.-L. Boillot, E. Riviere, P. Lesot, Eur. J. Inorg. Chem. 1999, 2117–
2119.
[22] S. Hirose, S. Hayami, Y. Maeda, Bull. Chem. Soc. Jpn. 2000, 73, 2059–2066.
[23] C. Krüger, P. Augustin, I. Nemec, Z. Travnicek, H. Oshio, R. Boca, F. Renz,
Eur. J. Inorg. Chem. 2013, 902–915.
[52] A. Amar, P. Savel, H. Akdas-Kilig, C. Katan, H. Meghezzi, A. Boucekkine, J.-
P. Malval, J.-L. Fillaut, Chem. Eur. J. 2015, 21, 8262–8270.
[53] G. Ritter, E. König, W. Irler, H. A. Goodwin, Inorg. Chem. 1978, 17, 224–
228.
[54] H. A. Goodwin, K. H. Sugiyarto, Chem. Phys. Lett. 1987, 139, 470–474.
[55] T. Buchen, P. Gütlich, H. A. Goodwin, Inorg. Chem. 1994, 33, 4573–4576.
[56] T. Buchen, P. Gütlich, K. H. Sugiyarto, H. A. Goodwin, Chem. Eur. J. 1996,
2, 1134–1138.
[57] N. Moliner, A. B. Gaspar, M. Carmen Munoz, V. Niel, J. Cano, J. A. Real,
Inorg. Chem. 2001, 40, 3986–3991.
[24] C. Krüger, P. Augustin, L. Dlhan, J. Pavlik, J. Moncol, I. Nemec, R. Boca, F.
Renz, Polyhedron 2015, 87, 194–201.
[25] A. Bannwarth, S. O. Schmidt, G. Peters, F. D. Sönnichsen, W. Thimm, R.
Herges, F. Tuczek, Eur. J. Inorg. Chem. 2012, 2776–2783.
[26] J. A. Real, M. C. Munoz, J. Faus, X. Solans, Inorg. Chem. 1997, 36, 3008–
3013.
[58] K. D. Murnaghan, C. Carbonera, L. Toupet, M. Griffin, M. M. Dirtu, C. Des-
planches, Y. Garcia, E. Collet, J.-F. Letard, G. G. Morgan, Chem. Eur. J. 2014,
20, 5613–5618.
[59] J.-F. Letard, P. Guionneau, L. Rabardel, J. A. K. Howard, A. E. Goeda, D.
Chasseau, O. Kahn, Inorg. Chem. 1998, 37, 4432–4441.
[27] H. Naggert, A. Bannwarth, S. Chemnitz, T. von Hofe, E. Quandt, F. Tuczek,
Dalton Trans. 2011, 40, 6364–6366.
[28] T. G. Gopakumar, F. Matino, H. Naggert, A. Bannwarth, F. Tuczek, R.
Berndt, Angew. Chem. Int. Ed. 2012, 51, 25, 6262–6266; Angew. Chem.
2012, 124, 6367–6371.
[60] P. Gütlich, R. Link, A. Trautwein, Mössbauer Spectroscopy and Transition
Metal Chemistry, Springer, Berlin, Heidelberg, New York, 1978.
[61] P. Adler, H. Spiering, P. Gütlich, Inorg. Chem. 1987, 26, 3840–3845.
[62] P. Adler, H. Spiering, P. Gütlich, Hyperfine Interact. 1988, 42, 1033–1038.
[63] P. Adler, A. Hauser, A. Vef, H. Spiering, P. Gütlich, Hyperfine Interact. 1989,
47, 343–356.
[29] T. G. Gopakumar, M. Bernien, H. Naggert, F. Matino, C. F. Hermanns, A.
Bannwarth, S. Mühlenberend, A. Krüger, D. Krüger, F. Nickel, W. Walter, R.
Berndt, W. Kuch, F. Tuczek, Chem. Eur. J. 2013, 19, 15702–15709.
[30] B. Rösner, M. Milek, A. Witt, B. Gobaut, P. Torelli, R. H. Fink, M. M. Khusni-
yarov, Angew. Chem. Int. Ed. 2015, 54, 44, 12976–12980; Angew. Chem.
2015, 127, 13168–13172.
Eur. J. Inorg. Chem. 2016, 2175–2186
2185
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim