Please do not adjust margins
Green Chemistry
Page 5 of 6
DOI: 10.1039/C8GC00740C
Green Chemistry
Communication
2009, 48, 2218-2220; Angew. Chem. 2009, 121, 2252-2254.
used one to three times was further characterized by TEM. As can be
seen from Fig. 2g and 6h the body of bulk Pd still is bulk particles and
the nano-Pd particles are evidently self-supported on the bulk Pd
surface after being used.
17. S. Jautze, R. Peters, Angew. Chem. Int. Ed. 2008, 47, 9284-9288;
Angew. Chem. 2008, 47, 9284-9288.
18. Z. Zhang, Z. Wang, R. Zhang, K. Ding, Angew. Chem. Int. Ed. 2010, 49,
6746-6750; Angew. Chem. 2010, 122, 6898-6902.
19. Y. Nishibayashi, M. Yamanashi, II. Wakiji, M. Hidai, Angew. Chem. Int.
Ed. 2000, 39, 2909-2911; Angew. Chem. 2000, 112, 3031-3033.
20. B. Kosog, C. E. Kefalidis, F. W. Heinemann, L. Maron, K. Meyer, J. Am.
Chem. Soc. 2012, 134, 12792-12797.
21. D. C. Powers, M. A. Geibel, J. E. Klein, T. Ritter, J. Am. Chem. Soc.
2009, 131, 17050-17051.
Conclusions
In summary, we have successfully developed the general and
versatile carbonylation reactions using a bulk Pd catalyst under organic
ligand free conditions. By applying an acid additive, aminocarbonylation
of wide range of olefins with amines are efficiently transformed into the
corresponding amides in good to excellent yields. Moreover, the
aminocarbonylation of aryl iodides with amines could also be
established when K2HPO4 was addition to the reaction. In addition, the
oxidative carbonylation of a variety of amines for symmetric urea
synthesis could also be realized by this catalyst. Such general and
versatile catalytic activation may be attributed to the formation of
multi-metallic active sites with multidimensional cooperative activation
function of the self-supported nano-Pd on the bulk palladium surface.
The study should be provided useful inspiration to apply bulk catalysts
in catalysis and synthetic chemistry.
22. Y. Y. Zhou, C. Uyeda, Angew. Chem. Int. Ed. 2016, 55, 3171-3175;
Angew. Chem. 2016, 128, 3223-3227.
23. M. Beller, Catalytic carbonylation reactions, Springer, 2010.
24. L. Kollár, Modern carbonylation methods, Wiley-VCH, 2008.
25. Y. Tsuji, T. Ohsumi, T. Kondo, Y. Watanabe, J. Organomet. Chem.
1986, 309, 333-344.
26. B. ElAli, K.Okuro, G. Vasapollo, H. Alper, J. Am. Chem. Soc. 1996,118,
4264-4270.
27. X. Fang, R. Jackstell, M. Beller, Angew. Chem. Int. Ed. 2013
14093; Angew. Chem. 2013 125, 14339-14343.
28. S. I. Lee, S.Son, Y. K. Chung, Chem. Commun. 2002, 1310-1311.
29. G. Zhang, B. Gao, H. Huang Angew. Chem. Int. Ed. 2015 26, 7657-7661;
Angew. Chem. 2015 127, 7767-7771.
, 52, 14089-
,
,
,
30. H. Liu, N. Yan, P. J. Dyson, Chem. Commun. 2014, 50, 7848-7851.
31. N. T. S. Phan, M. Van Der Sluys, C. W. Jones, Adv. Synth. Catal. 2006,
348, 609 - 679.
Acknowledgements
32. F. Ozawa, H. Soyma, T. Yamamoto, Tetrahedron Lett. 1982, 23, 3383-
3386.
33. T. Kobayashi, M. Tanaka, J. Organomet. Chem. 1982, 233, 64-66.
34. Y. Uozumi, T. Arii, T. Watanabe, J. Organomet. Chem. 2001, 66, 5272-
Financial supports from the NSFC (21633013, 91745106), National Key
Research and Development Program of China (2017YFA0403100) and
Key Research Program of Frontier Sciences of CAS (QYZDJ-SSW-SLH051)
are gratefully acknowledged. Additional optimization and
characterization data are provided in the supplementary materials.
5274.
35. T. T. Dang, Y. Zhu, S. C. Ghosh, Chem. Commun. 2012, 48,1805-1807.
36. R. A. Franz, F. Applegath, F. V. Morriss, J. Organomet. Chem.1961, 26,
3309-3312.
37. N. Sonoda, T. Yasuhara, K. Kondo, J. Am. Chem. Soc. 1971, 93, 6344-
6344.
38. F. Shi, Y.. Deng, T. SiMa, . Angew. Chem. Int. Ed. 2003
Angew. Chem.2003 115, 3379-3382.
39. Ca. N. Della, P. Bottarelli, A. Dibenedetto, J. Catal. 2011, 282, 120-127.
, 42, 3257-3260;
Notes and references
,
1.
2.
3.
4.
5.
6.
7.
8.
9.
P. Munnik, P. E. de Jongh, K. P. de Jong, Chem. Rev. 2015, 115, 6687-
6718.
G. A. Somorjai, J. Y. Park, Angew. Chem. Int. Ed. 2008, 47, 9212-9228;
Angew. Chem. 2008.
J. P. den Breejen, P. B. Radstake, G. L. Bezemer, J. H. Bitter, V. Froseth,
A. Holmen, J. Am. Chem. Soc. 2009, 131, 7197-7203.
X. F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res.
2013, 46, 1740-1748.
K. Yamamoto, T. Imaoka, W. J. Chun, O. Enoki, H. Katoh, M. Takenaga,
Nat. Chem. 2009, 1, 397-402.
S. Vajda, M. J. Pellin, J. P. Greeley, C. L. Marshall, L. A. Curtiss, G. A.
Ballentine, Nat. Mater. 2009, 8, 213-216.
Y. Lei, F. Mehmood, S. Lee, J. Greeley, B. Lee, S. Seifert, Science 2010,
328, 224-228.
L. Liu, U. Diaz, R. Arenal, G. Agostini, P. Concepcion, A. Corma, Nat.
Mater. 2017, 16, 132-138.
S. Zhang, C. R. Chang, Z. Q. Huang, J. Li, Z. Wu, Y. Ma, J. Am. Chem.
Soc. 2016, 138, 2629-2637.
10. B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, Nat. Chem. 2011,
3, 634-641.
11. R. Lang, T. Li, D. Matsumura, S. Miao, Y. Ren, Y. T. Cui, Angew. Chem.
Int. Ed. 2016, 55, 16054-16058; Angew. Chem. 2016, 128, 16288-
16292.
12. M. E. Broussard, B. Juma, S. G. Train, W. J. Peng, S. A. Laneman, G. G.
Stanley, Science 1993, 260,1784-1788.
13. C. Li, E. Widjaja, M. Garland, J. Am. Chem. Soc. 2003, 125, 5540-5548.
14. R. C. Matthews, D. K. Howell, W. J. Peng, S. G. Train, W. D. Treleaven,
G. G. Stanley, Angew. Chem. Int. Ed. 1996, 35, 2253-2256.
15. G. Sussfink, Angew. Chem. Int. Ed. 1994, 33, 67-69.
16. Z. Chen, M. Furutachi, Y. Kato, S. Matsunaga, M. Shibasaki, Int. Ed.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins