COMMUNICATIONS
were removed in vacuo, and the resulting residue was separated by column
chromatography on silica gel with hexane as eluent to give 4a >57 mg, 57%)
and 4b >22 mg, 22%). 4a: orange crystals; m.p. 178 ± 1808C; 1H NMR
>[D6]benzene, TMS): d 1.30 >s, 27H), 1.37 >s, 27H), 1.40 >s, 27H), 1.89 >s,
3H), 2.67 >s, 3H), 3.11 >s, 3H), 6.59 >s, 1H), 6.61 >s, 1H), 6.82 ± 6.99 >m,
5H), 7.24 >s, 1H); 13C{1H} NMR >[D6]benzene, TMS): d 20.9, 25.5, 26.0,
26.4, 29.3, 30.8, 32.3, 32.7, 33.2, 125.7, 126.1, 127.3, 128.5, 128.7, 129.8, 130.0,
136.1, 143.1, 143.5, 144.7, 145.5, 155.9, 170.8; 29Si{1H} NMR >[D6]benzene,
TMS): d 38.5, 44.7, 50.0; UV/Vis >n-hexane): lmax >e) 250 >46700), 303
>21930), 410 nm >2410); 4b: orange crystals; m.p. 90 ± 93 C; 1H NMR
>[D6]benzene, TMS): d 1.19 >s, 27H), 1.27 >s, 27H), 1.38 >s, 27H), 2.11 >s,
3H), 2.99 >s, 3H), 3.18 >s, 3H), 6.81 >s, 2H), 7.06 >t, J 7.8 Hz, 1H), 7.22 >t,
J 7.8 Hz, 2H), 7.45 >d, J 7.8 Hz, 2H), 7.52 >s, 1H); 13C{1H} NMR
>[D6]benzene, TMS): d 21.2, 25.8, 26.0, 26.5, 30.3, 31.0, 32.3, 32.4, 33.6,
126.5, 127.2, 128.0, 128.1, 129.1, 137.3, 140.7, 143.6 >2C), 145.7, 153.0, 167.4;
29Si{1H} NMR >[D6]benzene, TMS): d 39.6, 45.5, 49.4; UV/Vis >n-
hexane): lmax >e) 240 >41200), 302 >20900), 400 nm >2500).
tBu3Si groups are situated in cis,cis positions, as in 3b, and the
bicyclo[2.1.0] skeleton is highly folded to relieve steric
repulsion, as shown by the dihedral angle between the planes
of the three- and four-membered rings >97.48).
It is noteworthy that 3 is a good precursor of germylene and
digermene under mild conditions. Thermolysis of cyclotriger-
mane 3a at 708C in dry C6D6 for 3 hin the presence of an
excess of 2,3-dimethyl-1,3-butadiene cleanly yielded germa-
cyclopent-3-ene 7 >80%) and digermabicyclo[4.4.0]deca-3,8-
diene 8 >86%), clear evidence for the trapping of the
germylene 5 and the digermene 6, respectively >Scheme 2).
However, heating of 3 in the solid state at 1808C in vacuo led
to the quantitative formation of 2 by retro-Diels ± Alder
reaction.
Received: May 16, 2000 [Z15130]
Mes
SitBu3
Mes
SitBu3
Ge
Ge
[1] For general reviews on the chemistry of Si, Ge, Sn,
Me
Me
Me
5
+
and Pb, see: a) The Chemistry of Organic Germa-
7
nium, Tin and Lead Compounds >Ed.: S. Patai),
Wiley, Chichester, 1995; b) The Chemistry of Or-
ganic Silicon Compounds, Vol. 2 >Eds.: Z. Rappo-
port, Y. Apeloig), Wiley, New York, 1998.
70 °C
C6D6
Me
Me
SitBu3
tBu3Si
3a
Ge Ge
Me
[2] Reviews: a) T. Tsumuraya, S. A. Batcheller, S.
Masamune, Angew. Chem. 1991, 103, 916; Angew.
Me
Me
tBu3Si Ge Ge
SitBu3
6
Â
Chem. Int. Ed. Engl. 1991, 30, 902; b) J. Escudie, C.
Me
Me
Â
Couret, H. Ranaivonjatovo, J. Satge, Coord. Chem.
8
Rev. 1994, 130, 427; c) M. Weidenbruch, Chem. Rev.
1995, 95, 1479; d) M. Driess, H. Grützmacher,
Angew. Chem. 1996, 108, 900; Angew. Chem. Int.
Ed. Engl. 1996, 35, 828; e) K. M. Baines, W. G.
Scheme 2. Thermolysis of 3a and trapping of the thermolysis products.
The present [24] and [22] cycloaddition reactions of
cyclotrigermenes cleanly afford fused bicyclic cyclotriger-
mane derivatives and thus provide a new route to small ring
systems of Group 14 elements heavier than carbon.
Stibbs, Adv. Organomet. Chem. 1996, 39, 275; f) M. Weidenbruch, Eur.
J. Inorg. Chem. 1999, 373.
[3] Related three- and four-membered ring systyems of Si, Ge, and Sn:
Cyclotrisilenes: a) T. Iwamoto, C. Kabuto, M. Kira, J. Am. Chem. Soc.
1999, 121, 886; b) M. Ichinohe, T. Matsuno, A. Sekiguchi, Angew.
Chem. 1999, 111, 2331; Angew. Chem. Int. Ed. 1999, 38, 2194;
cyclotrigermenes: see refs. [5] and [6]; Cyclotrigermenium ions: c) A.
Sekiguchi, M. Tsukamoto, M. Ichinohe, Science 1997, 275, 60; d) M.
Ichinohe, N. Fukaya, A. Sekiguchi, Chem. Lett. 1998, 1045; e) A.
Sekiguchi, N. Fukaya, M. Ichinohe, Y. Ishida, Eur. J. Inorg. Chem. 2000,
1155; cyclotrigermenyl radical: f) M. M. Olmsted, L. Pu, R. S. Simons,
P. P. Power, Chem. Commun. 1997, 1595; cyclotristannene: g) N.
Wiberg, H.-W. Lerner, S.-K. Vasisht, S. Wagner, K. Karaghiosoff, H.
Nöth, W. Ponikwar, Eur. J. Inorg. Chem. 1999, 1211; cyclotetrasilenes:
h) M. Kira, T. Iwamoto, C. Kabuto, J. Am. Chem. Soc. 1996, 118, 10303;
i) T. Iwamoto, M. Kira, Chem. Lett. 1998, 277; j) N. Wiberg, H. Auer, H.
Nöth, J. Knizek, K. Polborn, Angew. Chem. 1998, 110, 3030; Angew.
Chem. Int. Ed. 1998, 36, 2869.
[4] For polyhedral germanium compounds containing three-membered
rings, see: a) A. Sekiguchi, C. Kabuto, H. Sakurai, Angew. Chem. 1989,
101, 97; Angew. Chem. Int. Ed. Engl. 1989, 28, 55; b) A. Sekiguchi, T.
Yatabe, C. Kabuto, H. Sakurai, J. Am. Chem. Soc. 1993, 115, 5853; c) N.
Wiberg, W. Hochmuth, H. Nöth, A. Appel, M. Schmidt-Amelunxen,
Angew. Chem. 1996, 108, 1437; Angew. Chem. Int. Ed. Engl. 1996, 35,
1333.
Experimental Section
3a: Orange crystals of 2 >60 mg, 0.064 mmol) were placed in a reaction
vessel witha magnetic stirrer. Dry, degassed hexane >1.5 mL) and 2,3-
dimethyl-1,3-butadiene >70 mg, 0.85 mmol) were introduced by vacuum
transfer, and the mixture was stirred for 6 h at room temperature. The
solvent and excess 2,3-dimethyl-1,3-butadiene were removed in vacuo, and
the resulting residue was separated by column chromatography on silica gel
withhexane as eluent to give 3a >41 mg, 63%) as yellow crystals; m.p. 123 ±
1268C >decomp); 1H NMR >[D6]benzene, TMS): d 1.30 >s, 27H), 1.37 >s,
54H), 1.70 >s, 6H), 1.90 >s, 3H), 2.60 >s, 2H), 2.64 >s, 2H), 2.80 >s, 6H),
6.78>s, 2H); 13C{1H} NMR >[D6]benzene, TMS): d 14.3, 23.0, 25.6, 26.8,
28.4, 29.9, 32.9, 33.5, 126.6, 128.8, 129.1, 137.0, 144.8; 29Si{1H} NMR
>[D6]benzene, TMS): d 45.9, 49.4; UV/Vis >n-hexane): lmax >e) 277
>18950), 388 nm >1740); elemental analysis calcd for C51H102Ge3Si3 >%): C
60.21, H 10.10; found: C 60.14, H 10.17.
3b: Compound 3b was prepared in 78% yield as yellow crystals; m.p. 130 ±
1328C >decomp); 1H NMR >[D6]benzene, TMS): d 1.30 >s, 27H), 1.35 >s,
27H), 1.37 >s, 27H), 1.84 >s, 3H), 1.97 >s, 3H), 2.57 ± 2.61 >m, 2H), 2.70 ±
2.73 >m, 1H), 2.79 >s, 3H), 2.80 >s, 3H), 2.95 ± 3.00 >m, 1H), 5.51 ± 5.53 >m,
1H), 6.78 >s, 2H); 13C{1H} NMR >[D6]benzene, TMS): d 20.9, 22.7, 25.6,
25.8, 26.8, 26.9, 27.0, 28.0, 28.6, 32.8, 32.9, 33.4, 123.3, 129.0, 129.1, 132.0,
137.0, 143.7, 144.5, 144.8; 29Si{1H} NMR >[D6]benzene, TMS): d 45.3, 45.4,
47.9; UV/Vis >n-hexane): lmax >e) 277 >16860), 388 nm >1520); elemental
analysis calcd for C50H100Ge3Si3 >%): C 59.85, H 10.04; found: C 59.74, H
10.06.
[5] A. Sekiguchi, N. Fukaya, M. Ichinohe, N. Takagi, S. Nagase, J. Am.
Chem. Soc. 1999, 121, 11587.
[6] A. Sekiguchi, H. Yamazaki, C. Kabuto, H. Sakurai, S. Nagase, J. Am.
Chem. Soc. 1995, 117, 8025.
[7] Diffraction data were collected at 120 K for 3b and 150 K for 4a on a
Mac Science DIP2030 Image Plate Diffractometer witha rotating
anode >50 kV, 90 mA) and graphite-monochromated MoKa radiation
>l 0.71070 ). The structures were solved by direct methods and
refined by full-matrix least-squares method with the SHELXL-97
program. Crystal data for 3b ´ C7H8: C57H108Ge3Si3, Mr 1095.47,
monoclinic, space group P21/n, a 15.2160>3), b 13.6410>3), c
4a and 4b: Orange crystals of 2 >60 mg, 0.064 mmol) were placed in a
reaction tube. Dry, degassed benzene >0.5 mL) and phenylacetylene
>90 mg, 0.88 mmol) were introduced by vacuum transfer, and the mixture
was heated for 6 h at 708C. The solvent and the excess phenylacetylene
29.2430>5) , b 99.810>1)8, V 5981.0>2) 3, Z 4, 1calcd
Angew. Chem. Int. Ed. 2000, 39, No. 21
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
1433-7851/00/3921-3883 $ 17.50+.50/0
3883