Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC02314F
COMMUNICATION
Journal Name
butyl-, and methoxy-substituted anilines proceeded smoothly This work was financially supported by the NSFC (21633013)
to provide the corresponding products in 76−89% yields (Table and Youth Innovation Promotion Association CAS.
3, entries 1-6). The anilines bearing electron-deficient groups,
such as halogen, ester, and cyano groups, provided the
Notes and references
corresponding products in 61-79% yields (entries 7-10). The
halogen groups in the products are useful handles for further
synthetic elaborations. As expected, 2-naphthalene amine also
underwent the N-monomethylation to give the desired
product in 81% yield (entries 12). It should be noted that
selective N-monomethylation of aliphatic primary amines
remains a challenge in this field. After improving the reaction
1
(a) A. Ricci, Amino Group Chemistry, From Synthesis to the
Life Sciences, Wiley-VCH, Weinheim, 2008; (b) R. N.
Salvatore, C. H. Yoon and K. W. Jung, Tetrahedron 2001, 57
7785–7811.
,
2
3
D. Desaiah, S. L. N. Reddy, S. Z. Imam and S. F. Ali, Pure Appl.
Chem., 2000, 72, 1001–1006.
For recent review of DMC as methyl source, see: (a) P. Tundo
and M. Selva, Acc. Chem. Res., 2002, 35, 706–716; for recent
review of DMC and MeOH as methyl source, see: (b) M.
Selva and A. Perosa, Green Chem., 2008, 10, 457–464; for
recent review of CO2 as methyl source, see: (c) A. Tlili, X.
Frogneux, E. Blondiaux and T. Cantat, Angew. Chem., Int. Ed.,
2014, 53, 2543–2545; (d) J. Klankermayer, S. Wesselbaum, K.
conditions,
benzylamine,
cyclohexylamine
and
cyclopentylamine underwent successful N-monomethylation
to afford the aim products in 64-73% yields (entries 13-15).
Table 4 Results of the N-methylation of secondary amines a
Yield(%)b
79
Beydoun and W. Leitner, Angew. Chem., Int. Ed., 2016, 55
,
Entry
1c
Substrate
Product
7296–7343; for recent examples of HCOOH as methyl source,
see: (e) S. Savourey, G. Lefevre, J.-C. Berthet and T. Cantat,
Chem. Commun., 2014, 50, 14033−14036; (f) I. Sorribes, K.
Junge and M. Beller, Chem. - Eur. J., 2014, 20, 7878−7883.
(a) W. Eschweiler and B. Dtsch, Chem. Ges., 1905, 38, 880–
882; (b) H. T. Clarke, H. B. Gillespie and S. Z. Weisshaus, J.
Am. Chem. Soc., 1933, 55, 457–4587; (c) M. L. Moore, Org.
React., 1949, 5, 301–330; (d) E. Farkas and C. J. Sunman, J.
Org. Chem., 1985, 50, 1110–1112; (d) J. R. Harding, J. R.
Jones, S. Y. Lu and R. Wood, Tetrahedron Lett., 2002, 43
9487–9488.
1p
3p
4
5
2
99
1q
3q
3c
4c
5
88
75
99
1r
1s
3r
3s
,
,
(a) S. K. Kundu, K. Mitra and A. Majee, RSC Adv., 2013,
3
8649–8651; (b) T. Lebleu, X. Ma, J. Maddaluno and J. Legros,
Chem. Commun., 2014, 50, 1836–1838; (c) T. Lebleu, J.
1t
3t
Maddaluno and J. Legros, Org. Chem. Front., 2015, 2, 324–
327.
R. M. Yebeutchou and E. Dalcanale, J. Am. Chem. Soc., 2009,
131, 2452–2453.
6
99
67
1u
6
7
8
3u
R. Grigg, T. R. B. Mitchell, S. Sutthivaiyakit and N.
Tongpenyai, J. Chem. Soc., Chem. Commun., 1981, 611–612.
(a) T. Oku and T. Ikariya, Angew. Chem., Int. Ed., 2002, 41
7c
1v
3v
,
3476–3479; (b) T. Oku, Y. Arita, H. Tsuneki, T. Ikariya, J. Am.
Chem. Soc., 2004, 126, 7368–7377.
(a) F. Li, J. Xie, H. Shan, C. Sun and L. Chen, RSC Adv., 2012, 2,
aamine (1.0 mmol), paraformaldehyde (1.5 mmol), CuAlOx (5 : 5) (20 mg), H2 (0.5
MPa), THF (3.0 mL), 120 °C, 9 h. bIsolated yields. c140 °C.
9
8645–8652; (b) J. Campos, L. S. Sharninghausen, M. G.
Manas and R. H. Crabtree, Inorg. Chem., 2015, 54, 5079–
5084.
Next, we further investigated the N-methylation of different
secondary amines. Cyclic secondary amines, such as
morpholine and piperazine, were converted into desired
products in 79% and 99% yields, respectively (Table 4, entries
1-2). In addition, dialkylamines were also compatible with this
catalyst system, affording the corresponding products in good
to excellent yields, too (entries 3-6). Furthermore, N-
methylaniline can also be transformed into N,N-
dimethylaniline with good yield (entry 7).
10 (a) S. Naskar and M. Bhattacharjee, Tetrahedron Lett., 2007,
48, 3367–3370; (b) T. T. Dang, B. Ramalingam and A. M.
Seayad, ACS Catal., 2015, 5, 4082–4088.
11 (a) Y. Li, I. Sorribes, T. Yan, K. Junge and M. Beller, Angew.
Chem., Int. Ed., 2013, 52, 12156–12160; (b) X. Cui, Y. Zhang,
Y. Deng and F. Shi, Chem. Commun., 2014, 50, 13521–13524;
(c) X. Cui, X. Dai, Y. Zhang, Y. Deng and F. Shi, Chem. Sci.,
2014,
12 (a) M. Selva, P. Tundo and A. Perosa, J. Org. Chem., 2001, 66
5, 649–655.
,
In conclusion, we have developed a simple CuAlOx catalyst
system for the selective N-monomethylation reaction of
677-680; (b) M. Selva, P. Tundo and T. Foccardi, J. Org.
Chem., 2005, 70, 2476−2485.
primary amines with paraformaldehyde and H2. This work 13 C. Guyon, M.-C. Duclos, E. Métay and M. Lemaire,
Tetrahedron Lett., 2016, 57, 3002–3005.
offers a clean and economic methodology for the selective
synthesis of N-monomethyl amines. Further investigation of
selective N-monomethylation of the long-chain primary alkyl
amines is underway in our laboratory.
14 (a) S. Nishimura, Handbook of Heterogeneous Catalytic
Hydrogenation for Organic Synthesis, Wiley, New York, 2001;
(b) X. Ge, C. Luo, C. Qian, Z. Yu and X. Chen, RSC Adv., 2014, 4,
43195–43203.
15 (a) A. Galtayries and J.-P. Bonnelle, Surf. Interface Anal., 1995,
23, 171-179; (b) J. P. Espinós, J. Morales, A. Barranco, A.
Caballero, J. P. Holgado and A. R. González-Elipe, J. Phys.
Chem. B 2002, 106, 6921-6929.
Acknowledgements
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins