Organic Letters
Letter
product. In this example, 4-ethynylacetophenone (10) was
obtained in 95% yield after cleavage of the silyl group. The
starting 1 was then regenerated from 3. We also showed that
regenerated 1 could be used in other chemistry, specifically in a
reaction with ethanol to afford a 92% yield of 2b. The product 2b
formed from regenerated 1 was identical to that formed from
fresh 1 and contained no Sonagashira coupling products.
While we were successful in using 1 as a phase anchor as shown
in the examples above, 1 has limitations. If the substrate that is
appended to 1 has a molar mass comparable to 1 and is
significantly polar, leaching levels will exceed 10%. This is
illustrated visually in Figure 2 with an octadecyldimethylsilyl-
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Science Foundation (Grant CHE-
1362735) and the Robert A. Welch Foundation (Grant A-0639)
for support of this research. A.M.L. also acknowledges the
Department of Chemistry of Texas A&M University for financial
support.
REFERENCES
■
(1) Wuts, P. G. M.; Greene, T. W. Greene’s protective groups in organic
synthesis; Wiley-Interscience: Hoboken, NJ, 2007.
(2) Zhang, W. Tetrahedron 2003, 59, 4475.
(3) Lickiss, P. D.; Stubbs, K. M. J. Organomet. Chem. 1991, 421, 171.
(4) Stranix, B. R.; Liu, H. Q.; Darling, G. D. J. Org. Chem. 1997, 62,
6183.
Figure 2. Phase selectivity of 11 at 25 °C in a thermomorphic 1/1 (v/v)
(5) (a) Encinas, L.; Chiara, J. L. Eur. J. Org. Chem. 2009, 2009, 2163.
(b) Guo, J.; Lu, Y.-J.; Zhang, L.; Ye, X.-S. Ye Synlett 2012, 23, 1696.
(c) Fujita, Y.; Fujita, S.; Okada, Y.; Chiba, K. Org. Lett. 2013, 15, 1155.
(d) Aihara, K.; Komiya, C.; Shigenaga, A.; Inokuma, T.; Takahashi, D.;
Otaka, A. Org. Lett. 2015, 17, 696. (e) Okada, Y.; Wakamatsu, H.; Sugai,
M.; Kauppinen, E. I.; Chiba, K. Org. Lett. 2015, 17, 4264. (f) Matsuno,
Y.; Shoji, T.; Kim, S.; Chiba, K. Org. Lett. 2016, 18, 800.
(6) McBride, K.; Gaide, T.; Vorholt, A.; Behr, A.; Sundmacher, K.
Chem. Eng. Process. 2016, 99, 97.
(7) Bergbreiter, D. E.; Tian, J.; Hongfa, C. Chem. Rev. 2009, 109, 530.
(8) Yang, Y.-C.; Bergbreiter, D. E. J. Org. Chem. 2010, 75, 873.
(9) Yang, Y.-C.; Bergbreiter, D. E. Pure Appl. Chem. 2013, 85, 493.
(10) Behr, A.; Turkowski, B.; Roll, R.; Schoebel, R.; Henze, G. Top.
Organomet. Chem. 2008, 23, 19.
mixture of heptane and 90% aqueous ethanol.
protected derivative of the azo dye 11. This silylated dye is
soluble in a hot homogeneous thermomorphic solvent mixture,
but cooling produced a biphasic mixture with a significant
amount of the dye derivative in the polar phase. Separate
experiments with the alcohol precursor of 11 show it is
predominantly in the polar phase of this thermomorphic
mixture. We believe this is because the azo dye portion of 11 is
both polar and has a mass that is approximately the same as the
silyl phase anchor and the hydrophobic groups in 1.
In summary, this work shows that hydrocarbon phase
anchored silyl protecting groups can serve both as regenerable
protecting groups and as purification handles. Using commer-
cially available and inexpensive octadecyldimethylsilyl chloride 1,
we showed that a variety of silyl ethers are >95% phase-selectively
soluble in the heptane phase of a heptane/DMF mixture when
alcohols are converted into silyl ethers using 1. We further show
that the octadecyldimethylsilyl products formed in the
deprotection can be used to reform 1. Other experiments show
that 1 can be used directly to silylate alkoxides produced in
reactions to form silyl ether products that facilitate purification
and separation of the products. The broader utility of 1 is shown
by the successful use of an ethyne derivative of 1 in a Sonogashira
coupling reaction. While our experiments mostly used a well-
defined n-octadecyldimethylsilyl chloride reagent, we also
showed that a less expensive commercially available silyl chloride
containing octadecyl silyl isomers is similarly effective. We
anticipate that in future work we can design more phase-
selectively soluble silylating agents to ameliorate the modest
losses due to leaching of silylated intermediates seen here and to
address issues that may come up with protection of more polar or
larger polar substrates. We also expect that adaptations of this
strategy will be generally useful in recycling stoichiometric
protecting groups and reagents.
(11) Rackl, D.; Kreitmeier, P.; Reiser, O. Green Chem. 2016, 18, 214.
(12) Hobbs, C.; Yang, Y.-C.; Ling, J.; Nicola, S.; Su, H.-L.; Bazzi, H. S.;
Bergbreiter, D. E. Org. Lett. 2011, 13, 3904.
(13) (a) Sommer, L. H.; Frye, C. L.; Parker, G. A.; Michael, K. W. J. Am.
Chem. Soc. 1964, 86, 3271. (b) Naka, A.; Matsumoto, Y.; Itano, T.;
Hasegawa, K.; Shimamura, T.; Ohshita, J.; Kunai, A.; Takeuchi, T.;
Ishikawa, M. J. Organomet. Chem. 2009, 694, 346.
(14) Daudt, W. H.; Hyde, J. F. J. Am. Chem. Soc. 1952, 74, 386. Savela,
R.; Zawartka, W.; Leino, R. Organometallics 2012, 31, 3199.
(15) Tacke, R.; Kornek, T.; Heinrich, T.; Burschka, C.; Penka, M.;
Pulm, M.; Keim, C.; Mutschler, E.; Lambrecht, G. J. Organomet. Chem.
̈
2001, 640, 140.
(16) Metz, S.; Natscher, J. B.; Burschka, C.; Gotz, K.; Kaupp, M.; Kraft,
̈
̈
P.; Tacke, R. Organometallics 2009, 28, 4700.
(17) Hoffmann, F.; Wagler, J.; Roewer, G. Eur. J. Inorg. Chem. 2010,
2010, 1133.
(18) Masaoka, S.; Banno, T.; Ishikawa, M. J. Organomet. Chem. 2006,
691, 174.
(19) Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874.
́
(20) Handa, S.; Fennewald, J. C.; Lipshutz, B. H. Angew. Chem., Int. Ed.
2014, 53, 3432.
(21) Xu, C.; Du, W.; Zeng, Y.; Dai, B.; Guo, H. Org. Lett. 2014, 16, 948.
(22) Plater, M. J.; Aiken, S.; Bourhill, G. Tetrahedron 2002, 58, 2405.
Ishikawa, M.; Sakamoto, H.; Tabuchi, T. Organometallics 1991, 10,
3173.
(23) (a) Thorand, S.; Krause, N. J. Org. Chem. 1998, 63, 8551.
(b) Bracher, F.; Krauß, J. Eur. J. Org. Chem. 2001, 2001, 4701.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures and NMR spectra (PDF)
C
Org. Lett. XXXX, XXX, XXX−XXX