Organic Letters
Letter
(2) For perhydrolysis of ketal, see (a) Murakami, N.; Kawanishi, M.;
Itagaki, S.; Horii, T.; Kobayashi, M. Bioorg. Med. Chem. Lett. 2002, 12,
69−72. (b) Murakami, N.; Kawanishi, M.; Mostaqul, H. M.; Li, J.;
Itagaki, S.; Horii, T.; Kobayashi, M. Bioorg. Med. Chem. Lett. 2003, 13,
4081−4084. (c) Li, Y.; Zhang, Q.; Wittlin, S.; Jin, H.-X.; Wu, Y.-K.
Tetrahedron 2009, 65, 6972−6985. (d) Jefford, C. W.; Li, Y.; Jaber,
A.; Boukouvalas, J. Synth. Commun. 1990, 20, 2589−2596.
(e) Terent’ev, A. O.; Kutkin, A. V.; Platonov, M. M.; Ogibin, Y. N.;
Nikishin, G. I. Tetrahedron Lett. 2003, 44, 7359−7363. (f) Reference
1m.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Scanned NMR and IR spectra, experimental procedures,
and X-ray structures (PDF)
Accession Codes
(3) For perhydrolysis of epoxides, see: (a) Antonelli, E.; D’Aloisio,
R.; Gambaro, M.; Fiorani, T.; Venturello, C. J. Org. Chem. 1998, 63,
7190−7206. (b) O’Neill, P. M.; Pugh, M.; Davies, J.; Ward, S. A.;
Park, B. K. Tetrahedron Lett. 2001, 42, 4569−4571. (c) Tang, Y.;
Dong, Y.; Wang, X.; Sriraghavan, K.; Wood, J. K.; Vennerstrom, J. L. J.
Org. Chem. 2005, 70, 5103−5110. (d) Liu, Y.-H.; Zhang, Z.-H.; Li, T.-
S. Synthesis 2008, 2008, 3314−3318. (e) Li, Y.; Hao, H.-D.; Wu, Y.-K.
Org. Lett. 2009, 11, 2691−2694. Note that the actual quantities of
PMA employed in refs 3e and 1m were only 1/12 of the reported
(calibrated for 1 equiv of molybdenum according to the formula
H3Mo12O40P·xH2O but by mistake not specified). For earlier reports
on perhydrolysis of epoxides, see: (f) Mattucci, A. M.; Perrotti, E.;
Santambrogio, A. J. Chem. Soc. D 1970, 1198−1199. (g) Adam, W.;
Rios, A. J. Chem. Soc. D 1971, 822−823. (h) Kerr, B.; McCullough, K.
J. Chem. Soc., Chem. Commun. 1985, 590−591. (i) Payne, G. B.;
Smith, C. W. J. Org. Chem. 1957, 22, 1682−1685. (j) Ogata, Y.;
Sawaki, Y.; Shimizu, H. J. Org. Chem. 1978, 43, 1760−1763. For
closely related perhydrolysis of oxytanes, see: (k) Dussault, P. H.;
Trullinger, T. K.; Noor-e-Ain, F. Org. Lett. 2002, 4, 4591−4593.
(l) Han, W.-B.; Wu, Y.-K. Org. Lett. 2014, 16, 5706−5709.
(4) For example, see: (a) Kim, H. S.; Tsuchiya, K.; Shibata, Y.;
Wataya, Y.; Ushigoe, Y.; Masuyama, A.; Nojima, M.; McCullough, K.
J. J. Chem. Soc., Perkin Trans. 1 1999, 1, 1867−1870. (b) Dong, Y.;
Matile, H.; Chollet, J.; Kaminsky, R.; Wood, J. K.; Vennerstrom, J. L.
J. Med. Chem. 1999, 42, 1477−1480.
(5) (a) Hao, H.-D.; Li, Y.; Wu, Y.-K. Org. Lett. 2011, 13, 4212−
4215. (b) Hao, H.-D.; Wittlin, S.; Wu, Y.-K. Chem. - Eur. J. 2013, 19,
7605−7619. For background of QHS (artemisinin), for example, see:
(c) Klayman, D. L. Science 1985, 228, 1049−1055. (d) Haynes, R. K.;
Vonwiller, S. C. Acc. Chem. Res. 1997, 30, 73−79. (e) Vroman, J. A.;
Alvim-Gaston, M.; Avery, M. A. Curr. Pharm. Des. 1999, 5, 101−138.
(f) Li, Y.; Wu, Y.-L. Curr. Med. Chem. 2003, 10, 2197−2230.
(g) O’Neill, P. M.; Posner, G. H. J. J. Med. Chem. 2004, 47, 2945−
2964. (h) Posner, G. H.; O’Neill, P. M. Acc. Chem. Res. 2004, 37,
397−404. (i) Tang, Y.; Dong, Y.; Vennerstrom, J. L. Med. Res. Rev.
2004, 24, 425−448.
(6) For the to date only existing known precedents of selective
perhydrolysis of epoxides in the presence of ethylene glycol ketals, see
ref 5a, b.
(7) The reaction of some substrates in the H2O2 “saturated” ethereal
solution was rather sluggish. Higher rates/better yields could be
attained through removing the solvent Et2O by bubbling N2 gas into
the reaction mixture.
(8) In this case, the ethereal H2O2 was employed without drying
over MgSO4. Use of MgSO4-dried ethereal H2O2 as in other runs led
to faster reaction but less satisfactory chemoselectivity.
(9) For the formation of 2u, compare see the Supporting
Information. Previously, 2u was also obtained in 77% yield from 1u
in 50% aq. H2O2−CH2Cl2 with HCO2H as the catalyst (where the
stereoselective addition of HOOH might be guided by the OH
through H-bonding). See: Ramirez, A. P.; Thomas, A. M.; Woerpel,
K. A. Org. Lett. 2009, 11, 507−510.
(10) Because of its potentially hazardous properties, 50% aq. H2O2
(used in some of the MeCN/aq. H2O based protocols) is a strictly
regulated reagent in China and thus not accessible to us.
(11) Also noteworthy is that use of t-BuOOH (commercially
available solution in decane) in reaction with ketone 1c instead of
ethereal H2O2 led to corresponding gem-di(t-BuOO) perketal in 90%
yield. Aldehydes could not be converted into corresponding gem-
tallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the National Natural Science
Foundation of China (21672244, 21532002) and the Strategic
Priority Research Program of the Chinese Academy of
Sciences (XDB20020200).
REFERENCES
■
(1) For ketone perhydrolysis, see e. g. (a) Criegee, R.; Dietrich, H.
Liebig. Ann. Chem. 1948, 560, 135−141. (b) Criegee, R.;
Schnorrenberg, W.; Becke, J. Liebig. Ann. Chem. 1949, 565, 7−21.
(c) Ledaal, T.; Solbjor, T. Acta Chem. Scand. 1967, 21, 1658−1659.
́
́
(d) Iskra, J.; Bonnet-Delpon, D.; Begue, J.-P. Tetrahedron Lett. 2003,
44, 6309−6312. (e) Ramirez, A.; Woerpel, K. A. Org. Lett. 2005, 7,
4617−4620. (f) Zmitek, K.; Zupan, M.; Stavber, S.; Iskra, J. Org. Lett.
2006, 8, 2491−2494. (g) Das, B.; Krishnaiah, M.; Veeranjaneyulu, B.;
Ravikanth, B. Tetrahedron Lett. 2007, 48, 6286−6289. (h) Terent’ev,
A. O.; Platonov, M. M.; Ogibin, Y. N.; Nikishin, G. I. Synth. Commun.
2007, 37, 1281−1287. (i) Zmitek, K.; Zupan, M.; Iskra. Org. Biomol.
Chem. 2007, 5, 3895−3908 (a review). . (j) Das, B.; Veeranjaneyulu,
B.; Krishnaiah, M.; Balasubramanyam, P. J. Mol. Catal. A: Chem. 2008,
284, 116−119. (k) Ghorai, P.; Dussault, P. H. Org. Lett. 2008, 10,
4577−4579. (l) Ghorai, P.; Dussault, P. H. Org. Lett. 2009, 11, 213−
216. (m) Li, Y.; Hao, H.-D.; Zhang, Q.; Wu, Y.-K. Org. Lett. 2009, 11,
1615−1618. (n) Bunge, A.; Hamann, H.-J.; Liebscher, J. Tetrahedron
Lett. 2009, 50, 524−526 (aldehydes as substrates). . (o) Tada, N.;
Cui, L.; Okubo, H.; Miura, T.; Itoh, A. Chem. Commun. 2010, 46,
1772−1774. (p) Sashidhara, K. V.; Avula, S. R.; Singh, L. R.; Palnati,
G. R. Tetrahedron Lett. 2012, 53, 4880−4884. (q) dos Passos Gomes,
G.; Yaremenko, I. A.; Radulov, P. S.; Novikov, R. A.; Chernyshev, V.
V.; Korlyukov, A. A.; Nikishin, G. I.; Alabugin, I. V.; Terent’ev, A. O.
Angew. Chem., Int. Ed. 2017, 56, 4955−4959. (r) Schwartz, C.;
Note that apart from as precursors to tetraoxanes, gem-dihydroper-
oxides may also be used as starting materials for peroxycarbenium [3
+ 2] cycloaddition reaction (cf. ref 13). For access to hydroperoxides
via photosensitized oxygenation, see e.g.: (s) Eske, A.; Ecker, S.;
Fendinger, C.; Goldfuss, B.; Jonen, M.; Lefarth, J.; Neudorfl, J.;
Spilles, M.; Griesbeck, A. G. Angew. Chem., Int. Ed. 2018, 57, 13770−
13774.
D
Org. Lett. XXXX, XXX, XXX−XXX