6698
J. Am. Chem. Soc. 2001, 123, 6698-6699
Scheme 1
First Divergent Strategy Using Two AB2 Unprotected
Monomers for the Rapid Synthesis of Dendrimers
Laurent Brauge, Germinal Magro,
Anne-Marie Caminade,* and Jean-Pierre Majoral*
Laboratoire de Chimie de Coordination
CNRS, 205 route de Narbonne
31077 Toulouse Cedex 4, France
ReceiVed August 7, 2000
Dendrimers and dendritic molecules1 offer a fascinating palette
of very unique properties, with applications in numerous fields
ranging from chemistry, catalysis, or material sciences to biology.
However, their synthesis is tedious, due to the large number of
steps needed to grow these macromolecules. Several ways have
been proposed to accelerate the synthesis by diminishing the
number of steps. The first one, often called “double-stage”,2
implies the grafting of dendrons to the surface of small dendrimers
called “hypercores”. However, the total number of reactions used
to obtain the dendron and the hypercore is the same as for the
simple step-by-step synthesis of the final dendrimer. A second
type of method used to improve the synthesis of dendrimers is
called “double exponential growth”.3 In this case, the growing
of the dendron occurs bidirectionally (periphery and focal point).
This type of strategy could be interesting for the rapid synthesis
of high-generation dendrimers, but it has been experienced only
for middle-sized dendrons, leading, for instance, to a fourth
generation dendron in seven steps (instead of eight by a classical
way). A third way to accelerate the synthesis of dendrimers
consists of using hypermonomers;4 this means compounds of type
AB4 or AB8 instead of the AB2 or AB3 monomers classically
used in dendrimer chemistry. This strategy increases rapidly the
number of end groups, but it does not improve the number of
steps needed to obtain one generation (generally 2). Finally, a
fourth method called “orthogonal coupling strategy”5 consists of
using two types of AB2 units, which contain two pairs of
complementary coupling functionalities. This type of “orthogonal
system” implies a set of completely independent class of
protecting groups.6 Thus, in all cases at least one of these functions
needs to be activated using another reagent, which of course
generates byproducts, implying purification at each step. However,
this strategy designed for the convergent synthesis of dendrons
is powerful since it gives a new generation at each step. To the
best of our knowledge, this type of strategy has never been applied
to a divergent synthesis of dendrimers, or to two pairs of com-
plementary functions able to react spontaneously without any
activating agent. This last point appears highly desirable, since it
could theoretically allow the growing of dendrimers without
purification, provided each reaction is chosen to be quantitative.
In the course of our researches concerning the synthesis of
phosphorus-containing dendrimers, we have demonstrated that the
condensation reaction between phosphorhydrazides and aldehydes7
on one side, and the Staudinger reaction between phosphines and
azides8 on the other side, possess both properties. Indeed, these
reactions are quantitative; there is no need for an activating agent,
and the byproducts are only water for the condensation and
nitrogen for the Staudinger reaction. Having in hand these
reactions, the goal was to design two types of AB2 monomers,
one with aldehyde and azide functions, the other one with
hydrazine and phosphine functions. The later one is obtained in
(1) For reviews, see for example: (a) Tomalia, D. A.; Naylor, A. M.;
Goddard, W. A., III. Angew. Chem., Int. Ed. Engl. 1990, 29, 138. (b) Tomalia,
D. A.; Durst, H. D. In Topics in Current Chemistry; Weber, E., Ed.;
Supramolecular Chemistry I, Vol. 165; Springer-Verlag: Berlin, 1993; pp
193-313. (c) Newkome, G. R.; Moorefield, C. N.; Vo¨gtle, F. In Dendritic
Molecules; VCH: Weinheim Germany, 1996. (d) Zeng, F.; Zimmerman, S.
C. Chem. ReV. 1997, 97, 1681. (e) Archut, A.; Vo¨gtle, F. Chem. Soc. ReV.
1998, 27, 233. (f) Chow, H. F.; Mong, T. K. K.; Nongrum, M. F.; Wan, C.
W. Tetrahedron 1998, 54, 8543. (g) Fischer, M.; Vo¨gtle, F. Angew. Chem.,
Int. Ed. 1999, 38, 884. (h) Bosman, A. W.; Janssen, H. M.; Meijer, E. W.
Chem. ReV. 1999, 99, 1665. (i) Majoral J. P.; Caminade A. M. Chem. ReV.
1999, 99, 845.
(2) (a) Wooley, K. L.; Hawker, C. J.; Fre´chet, J. M. J. J. Am. Chem. Soc.
1991, 113, 4252. (b) Miller, T. M.; Neenan, T. X.; Zayas, R.; Bair, H. E. J.
Am. Chem. Soc. 1992, 114, 1018. (c) Xu, Z. F.; Kahr, M.; Walker, K. L.;
Wilkins, C. L.; Moore, J. S. J. Am. Chem. Soc. 1994, 116, 4537. (d) Ihre, H.;
Hult, A.; Fre´chet, J. M. J.; Gitsov, I. Macromolecules 1998, 31, 4061. (e)
Forier, B.; Dehaen, W. Tetrahedron 1999, 55, 9829. (f) Maraval, V.; Laurent,
R.; Donnadieu, B.; Mauzac, M.; Caminade, A. M.; Majoral, J. P. J. Am. Chem.
Soc. 2000, 122, 2499.
(3) (a) Kawaguchi, T.; Walker, K. L.; Wilkins, C. L.; Moore, J. S. J. Am.
Chem. Soc. 1995, 117, 2159. (b) Chang, H. T.; Chen, C. T.; Kondo, T.;
Siuzdak, G.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 182. (c)
Klopsch, R.; Franke, P.; Schlu¨ter, A. D. Chem. Eur. J. 1996, 2, 1330. (d)
Ashton, P. R.; Anderson, D. W.; Brown, C. L.; Shipway, A. N.; Stoddart, J.
F.; Tolley, M. S. Chem. Eur. J. 1998, 4, 781.
(4) (a) Wooley, K. L.; Hawker, C. J.; Fre´chet, J. M. J. Angew. Chem., Int.
Ed. Engl. 1994, 33, 82. (b) Twyman, L. J.; Beezer, A. E.; Mitchell, J. C. J.
Chem. Soc., Perkin Trans. 1 1994, 407. (c) L’abbe´, G.; Forier, B.; Dehaen,
W. Chem. Commun. 1996, 2143. (d) Ohta, M.; Fre´chet, J. M. J. J. Macromol.
Sci. Pure Appl. Chem. 1997, A34, 2025. (e) Bo, Z. S.; Zhang, X.; Zhang, C.
M.; Wang, Z. Q.; Yang, M. L.; Shen, J. C.; Ji, Y. P. J. Chem. Soc., Perkin
Trans. 1 1997, 2931. (f) Morgenroth, F.; Berresheim, A. J.; Wagner, M.;
Mu¨llen, K. Chem. Commun. 1998, 1139. (g) Wiesler, U. M.; Mu¨llen, K. Chem.
Commun. 1999, 2293. (h) Gilat, S. L.; Adronov, A.; Fre´chet, J. M. J. J. Org.
Chem. 1999, 64, 7474. (i) Scott, D. A.; Kru¨lle, T. M.; Finn, M.; Fleet, G. W.
J. Tetrahedron Lett. 2000, 3959.
9
two steps from P(S)Cl3. Two equivalents of NaOC6H4PPh2 are
first reacted at low temperature to yield ClP(S)(OC6H4PPh2)2. A
(5) (a) Spindler, R.; Fre´chet, J. M. J. J. Chem. Soc., Perkin Trans. 1 1993,
913. (b) Xu, Z.; Moore, J. S. Angew. Chem., Int. Ed. Engl. 1993, 32, 1354.
(c) Zeng, F. W.; Zimmerman, S. C. J. Am. Chem. Soc. 1996, 118, 5326. (d)
Deb, S. K.; Maddux, T. M.; Yu, L. P. J. Am. Chem. Soc. 1997, 119, 9079. (e)
Deb, S. K.; Maddux, T. M.; Yu, L. P. Polym. Mater. Sci. Eng. 1997, 77, 163.
(f) Klopsch, R.; Koch, S.; Schlu¨ter, A. D. Eur. J. Org. Chem. 1998, 1275, 5.
(g) Ingerl, A.; Neubert, I.; Klopsch, R.; Schlu¨ter, A. D. Eur. J. Org. Chem.
1998, 2551, 1. (h) Freeman, A. W.; Fre´chet, J. M. J. Org. Lett. 1999, 1, 685.
(i) Ishida, Y.; Jikei, M.; Kakimoto, M. Macromolecules 2000, 33, 3202.
(6) Barany, G.; Merrifield, R. B. J. Am. Chem. Soc. 1977, 99, 7363.
(7) (a) Launay, N.; Caminade, A. M.; Lahana, R.; Majoral, J. P. Angew.
Chem., Int. Ed. Engl. 1994, 33, 1589. (b) Launay, N.; Caminade, A. M.;
Majoral, J. P. J. Am. Chem. Soc. 1995, 117, 3282. (c) Slany, M.; Bardaj´ı, M.;
Casanove, M. J.; Caminade, A. M.; Majoral, J. P.; Chaudret, B. J. Am. Chem.
Soc. 1995, 117, 9764. (d) Lartigue, M. L.; Donnadieu, B.; Galliot, C.;
Caminade, A. M.; Majoral, J. P.; Fayet, J. P. Macromolecules 1997, 30, 7335.
(8) (a) Galliot, C.; Pre´voˆte´, D.; Caminade, A. M.; Majoral, J. P. J. Am.
Chem. Soc. 1995, 117, 5470. (b) Maraval, V.; Laurent, R.; Donnadieu, B.;
Mauzac, M.; Caminade, A. M.; Majoral, J. P. J. Am Chem. Soc. 2000, 122,
2499. (c) Sebastian, R. M.; Magro, G.; Caminade, A. M.; Majoral, J. P.
Tetrahedron 2000, 56, 6269.
(9) Merino, S.; Brauge, L.; Caminade, A. M.; Majoral, J. P.; Taton, D.;
Gnanou, Y. Chem. Eur. J. 2001. Accepted for publication.
10.1021/ja0029228 CCC: $20.00 © 2001 American Chemical Society
Published on Web 06/19/2001