Chemistry Letters 2001
603
Haemers, B. D. Vanden, S. R. Pattyn,W. Bollaert, and I.
Levshin, J. Heterocycl. Chem., 28, 685 (1991); P. Guerry, S.
Jolidon, R. Masciadri, H. Staider, and R. Them, PCT Int.
Patent 16046 (1996); Chem. Abstr., 125, 142773c (1996).
C. C. Proce and R. M. Roberts, Org. Synth., Coll. Voll. III,
1955, 272.
bon, to promote the cyclization step, might be responsible for
the success of the present reaction sequence.
A typical procedure is illustrated by the preparation of
ethyl 4-hydroxy-3-quinolinecarboxylate (5b). To a stirred tur-
bid solution of a magnesium amide (0 °C), generated by treat-
ing ethylmagnesium bromide (11 mmol) with diisopropylamine
(11 mmol, 1.1 g) in refluxing ether (15 mL), was added ethyl
acetate (3.6 mmol, 0.32 g) dropwise. After 5 min, a solution of
ethyl 2-isocyanobenzoate (2b) (1.8 mmol, 0.31g) in diethyl
ether (5 mL) was added, and stirring was continued for an addi-
tional 2 h. The resulting mixture was treated with saturated
aqueous ammonium chloride and extracted with
dichloromethane three times. The combined extracts were
washed with brine, dried over anhydrous sodium sulfate, and
evaporated. The residual solid was triturated with
hexane–diethyl ether to give the crude 5b (0.35 g), which was
recrystallized from chloroform to give pure 5b (0.31 g, 79%).8
In summary, a novel and convenient synthesis of 4-
hydroxy-3-quinolinecarboxylic acid derivatives has been
achieved. The present method may find some value in organic
synthesis, because the reaction procedure is simple and the
starting materials are readily available.
5
6
K. Uneyama, O. Morimoto, and F. Yamashita, Tetrahedron
Lett., 30, 4821 (1989); E. J. Latham, S. M. Murphy, and S. P.
Stanforth, Tetrahedron Lett., 35, 3395 (1994). See also perti-
nent references in ref 3.
7
3a:2 Rf 0.41 (1:4 AcOEt–hexane); IR (neat) 2127, 1732 cm–1;
1H NMR (270 MHz, CDCl3) δ 3.98 (3H, s), 7.4–7.6 (3H, m),
8.01 (1H, dd, J = 8.0, 1.6 Hz); MS m/z 161 (M+, 37), 146
(53), 130 (92), 102 (100). 3b: Rf 0.56 (1:4 AcOEt–hexane);
1
IR (neat) 2125, 1730 cm–1; H NMR (270 MHz, CDCl3) δ
1.44 (3H, t, J = 7.3 Hz), 4.45 (2H, q, J = 7.3 Hz), 7.4–7.6
(3H, m), and 8.00 (1H, dd, J = 8.1, 1.7 Hz); MS m/z 175 (M+,
29), 130 (100). 3c: Rf 0.54 (1:4 AcOEt–hexane); IR (neat)
1
2125, 1731 cm–1; H NMR (270 MHz, CDCl3) δ 1.06 (3H, t,
J = 7.3 Hz), 1.75–1.9 (2H, m), 4.35 (2H, t, J = 6.6 Hz),
7.4–7.6 (3H, m), 8.01 (1H, dd, J = 7.3, 2.3 Hz); MS m/z 189
(M+, 4.1), 188 (4.5), 174 (43), 130 (100). 3d: Rf 0.54 (1:4
1
AcOEt–hexane); IR (neat) 2125, 1731 cm–1; H NMR (270
MHz, CDCl3) δ 0.98 (3H, t, J = 7.3 Hz), 1.45–1.6 (2H, m),
1.7–1.85 (2H, m), 4.39 (2H, t, J = 6.6 Hz), 7.4–7.6 (3H, m),
8.00 (1H, dd, J = 7.6, 1.7 Hz); MS m/z 203 (M+, 0.42), 188
(9.3), 174 (38), 130 (83), 102 (100). 3e: mp 58–60 °C (hexa-
Appreciation is expressed to Mrs. Miyuki Tanmatsu of this
Department, for determining the mass spectra.
1
ne); IR (KBr disk) 2131, 1732 cm–1; H NMR (270 MHz,
CDCl3) δ 1.06 (3H, t, J = 7.3 Hz), 1.75–1.95 (2H, m), 4.36
(2H, t, J = 6.5 Hz), 7.42 (1H, d, J = 8.6 Hz), 7.53 (1H, dd, J =
8.6, 2.3 Hz), 7.98 (1H, d, J = 2.3 Hz); MS m/z 223 (M+, 5.3),
208 (22), 181 (47), 164 (100). 3f: mp 100–102 °C
References and Notes
1
For recent reports, see K. Kobayashi, H. Takabatake, T.
Kitamura, O. Morikawa, and H. Konishi, Bull. Chem. Soc.
Jpn., 70, 1697 (1997); K. Kobayashi, R. Nakahashi, A.
Shimizu, O. Morikawa, and H. Konishi, J. Chem. Soc., Perkin
Trans. 1, 1999, 1547; K. Kobayashi, T. Kitamura, R.
Nakahashi, A. Shimizu, K. Yoneda, O. Morikawa, and H.
Konishi, Heterocycles, 53, 1021 (2000).
1
(hexane–Et2O); IR (KBr disk) 2130, 1703 cm–1; H NMR
(270 MHz, CDCl3) δ 1.06 (3H, t, J = 7.3 Hz), 1.75–1.95 (2H,
m), 3.94 (6H, s), 4.34 (2H, t, J = 6.6 Hz), 6.90 (1H, s), 7.47
(1H, s); MS m/z 249 (M+, 12), 207 (100).
8
5b: mp 267–270 °C (Et2O) (lit.9 270 °C); 5c: mp 67–69 °C
(Et2O); IR (KBr disk) 3400–2700, 1716, 1645, 1611 cm–1; 1H
NMR (270 MHz, CDCl3) δ 0.99 (3H, t, J = 7.3 Hz), 1.6–1.8
(2H, m), 4.13 (2H, t, J = 7.1 Hz), 5.75 (1H, s), 7.3–7.4 (2H,
m), 7.45–7.6 (2H, m, including s at 7.54), 7.62 (1H, d, J = 7.9
Hz); MS m/z 231 (M+, 5.8), 189 (9.6), 172 (37), 145 (100).
5d: mp 220–225 °C (Et2O); IR (KBr disk) 3400–2700, 1702,
1616 cm–1; 1H NMR (270 MHz, DMSO-d6) δ 0.92 (3H, t, J =
7.3 Hz), 1.3–1.5 (2H, m), 1.55–1.7 (2H, m), 4.16 (2H, t, J =
6.6 Hz), 7.40 (1H, t, J = 8.2 Hz), 7.60 (1H, d, J = 8.2 Hz),
7.68 (1H, t, J = 8.2 Hz), 8.15 (1H, d, J = 8.2 Hz), 8.51 (1H,
s), 11.23 (1H, br s); MS m/z 245 (M+, 17), 171 (100). 5e: mp
128–132 °C (Et2O–CHCl3); IR (KBr disk) 3400–2700, 1729,
2
3
Few synthetic studies utilizing o-isocyanobenzoate have
appeared. V. Atlan, C. Buron, and L. El Kaïm, Synlett, 2000,
489.
F. Clemence, J. Benzoni, A. Jouanen, S. Jouquey, M.
Mouren, and R. Deraedt, J. Med. Chem., 31, 1453 (1988); H.
Uno, T. Kon, Y. Nishikawa, T. Shindo, H. Nakamura, and K.
Ishii, PCT Int. Patent 05435 (1989); Chem. Abstr., 110,
23866r (1989); K. Uneyama, Jpn. Patent 229147 (1990);
Chem. Abstr., 114, 121709u (1991); A. Kumar, K. K. Saxena,
S. Lata, and R. S. Saxena, J. Indian Chem. Soc., 68, 138
(1991); H. Hayashi, Y. Miwa, S. Ichikawa, N. Yoda, I, Miki,
A. Ishii, M. Konno, T. Yasuzawa, and F. Suzuki, J. Med.
Chem., 36, 617 (1993); V. Schmieden, S. Jezequel, and H.
Betz, Mol. Phrmacol., 50, 1200 (1996); T. Oku, S. Sato, T.
Inoue, Y. Urano, T. Yoshimitsu, and N. Yoshida, Jpn. Patent,
291988 (1998); Chem. Abstr., 130, 24979e (1999); T.
Stahrfeldt, Eur. Patent 900794 (1999); Chem. Abstr., 130,
223969b (1999); T. Stahrfelt and M. Mehrer, Eur. Patent,
900824 (1999); Chem. Abstr., 130, 223971w (1999); J. A.
Tucker, V. A. Vaillancourt, J. W. Strohbach, K. R. Romines,
M. E. Shunute, M. M. Cudaby, S. Thaisrivongs, and S. R.
Turner, PCT Int. Patent 32450 (1999); Chem. Abstr., 131,
73568z (1999).
1
1651, 1609 cm–1; H NMR (270 MHz, CDCl3) δ 0.99 (3H, t,
J = 7.3 Hz), 1.6–1.8 (2H, m), 4.12 (2H, t, J = 6.9 Hz), 5.70
(1H, s), 7.31 (1H, d, J = 8.6 Hz), 7.47 (1H, dd, J = 8.6, 2.3
Hz), 7.51 (1H, s), 7.58 (1H, d, J = 2.3 Hz); MS m/z 265 (M+,
14), 223 (17), 206 (37), 179 (100). 5f: mp 163–165 °C
(Et2O); IR (KBr disk) 3400–2700, 1699, 1642, 1612 cm–1; 1H
NMR (270 MHz, CDCl3) δ 1.00 (3H, t, J = 7.3 Hz), 1.6–1.8
(2H, m), 3.94 (6H, s), 4.13 (2H, t, J = 6.9 Hz), 5.54 (1H, s),
6.86 (1H, s), 6.94 (1H, s), 7.54 (1H, s); MS m/z 291 (M+, 17),
205 (100). 5g: mp 175–180 °C (CHCl3); IR (KBr disk)
3400–2700, 1697, 1630 cm–1; 1H NMR (270 MHz, CDCl3) δ
1.52 (9H, s), 5.67 (1H, s), 7.3–7.4 (2H, m), 7.50 (1H, t, J =
7.0 Hz), 7.52 (1H, s), 7.58 (1H, d, J = 7.9 Hz); MS m/z 245
(M+, 14), 189 (100). 5h: mp 76–79 °C (CHCl3); IR (KBr
4
D. Humbert, J. C. Gasc, and P. F. Hunt, Eur. Patent, 168309
(1986); Chem. Abstr., 105, 97458c (1986); P. E. Sum, J. P.
Joseph, C. B. Ziegler, Jr., D. B. Moran, and Y. I. Lin, Eur.
Patent, 230053 (1986); Chem. Abstr., 105, 112498y (1986); J.
Frigola, A. Colombo, J. Mas, and J. Pares, J. Heterocycl.
Chem., 24, 399 (1987); K. Hayashi, Y. Hayase, K. Ueda, S.
Tobitaka, and T. Takahashi, Jpn. Patent, 265088 (1989);
Chem. Abstr., 112, 179023r (1990); M. Q. Zhang, A.
1
disk) 3400–2700, 1631 cm–1; H NMR (270 MHz, CDCl3) δ
3.08 (6H, s), 5.97 (1H, s), 7.4–7.5 (4H, m), 7.79 (1H, dd, J =
7.9, 2.0 Hz); MS m/z 217 (11), 216 (M+, 10), 172 (79), 116
(100).
9
G. F. Duffin and J. D. Kendall, J. Chem. Soc., 1948, 893.