3494
G. D. Cuny et al. / Bioorg. Med. Chem. Lett. 20 (2010) 3491–3494
Table 3
Supplementary data
IC50 determinations for haspin and DYRK2 kinase inhibition23
NH2
Supplementary data associated with this article can be found, in
X
MeO
OMe
N
References and notes
Compd
X
Haspin IC50
(lM)
DYRK2 IC50 (lM)
1. (a) Tanaka, H.; Yoshimura, Y.; Nozaki, M.; Yomogida, K.; Tsuchida, J.; Tosaka, Y.;
Habu, T.; Nakanishi, T.; Okada, M.; Nojima, H.; Nishimune, Y. J. Biol. Chem. 1999,
274, 17049; (b) Tanaka, H.; Yoshimura, Y.; Nishina, Y.; Nozaki, M.; Nojima, H.;
Nishimune, Y. FEBS Lett. 1994, 355, 4.
12
13
18
NH
O
CH2
1.7
NA
0.025
6.5
NA
0.24
2. Higgins, J. M. G. Gene 2001, 267, 55.
3. Dave, S. S.; Fu, K.; Wright, G. W.; Lam, L. T.; Kluin, P.; Boerma, E. J.; Greiner, T. C.;
Weisenburger, D. D.; Rosenwald, A.; Ott, G.; Muller-Hermelink, H. K.; Gascoyne,
R. D.; Delabie, J.; Rimsza, L. M.; Braziel, R. M.; Grogan, T. M.; Campo, E.; Jaffe, E.
S.; Dave, B. J.; Sanger, W.; Bast, M.; Vose, J. M.; Armitage, J. O.; Connors, J. M.;
Smeland, E. B.; Kvoloy, S.; Holte, H.; Fisher, R. I.; Miller, T. P.; Montserrat, E.;
Wilson, W. H.; Bahl, M.; Zhao, H.; Yang, L.; Powell, J.; Simon, R.; Chan, W. C.;
Staudt, L. M. N. Eng. J. Med. 2006, 354, 2431.
4. Rosenwald, A.; Alizadeh, A. A.; Widhopf, G.; Simon, R.; Davis, R. E.; Yu, X.; Yang,
L.; Pickeral, O. K.; Rassenti, L. Z.; Powell, J.; Botstein, D.; Byrd, J. C.; Grever, M. R.;
Cheson, B. D.; Chiorazzi, N.; Wilson, W. H.; Kipps, T. J.; Brown, P. O.; Staudt, L.
M. J. Exp. Med. 2001, 194, 1639.
5. Dai, J.; Sultan, S.; Taylor, S. S.; Higgins, J. M. G. Genes Dev. 2005, 19, 472.
6. Higgins, J. M. G. Chromosoma 2010, 119, 137.
7. Polioudaki, H.; Markaki, Y.; Kourmouli, N.; Dialynas, G.; Theodoropoulos, P. A.;
Singh, P. B.; Georgatos, S. D. FEBS Lett. 2004, 560, 39.
8. Dai, J.; Sullivan, B. A.; Higgins, J. M. G. Dev. Cell 2006, 11, 741.
9. Dai, J.; Kateneva, A. V.; Higgins, J. M. G. J. Cell Sci. 2009, 122, 4168.
10. (a) Higgins, J. M. G. Cell. Mol. Life Sci. 2003, 60, 446; (b) Higgins, J. M. G. Protein
Sci. 2001, 10, 1677.
11. (a) Eswaran, J.; Patnaik, D.; Filippakopoulos, P.; Wang, F.; Stein, R. L.; Murray, J.
W.; Higgins, J. M. G.; Knapp, S. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 20198; (b)
Villa, F.; Capasso, P.; Tortorici, M.; Forneris, F.; de Marco, A.; Mattevi, A.;
Musacchio, A. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 20204.
NA: Not active at 20 lM.
haspin inhibition. For DYRK2 inhibition the primary amine was
better than secondary (39) or tertiary (40) amines. Interestingly,
incorporation of the nitrogen into a phthalimide resulted in a less
dramatic impact on DYRK2 inhibition compared to haspin and pro-
vided a moderately potent analog (41) that was 5.4-fold selective
for DYRK2 verses haspin. Similar to the observations made with
haspin inhibition, replacement of the thioether with an amine
(12) or ether (13) was detrimental to DYRK2 inhibition, while
replacement of the sulfur with a methylene (18) was tolerated, al-
beit with a fivefold reduction in potency.
In conclusion, a SAR study of the acridine derivative 1, identified
utilizing a recently developed HTS assay, was conducted for both
haspin and DYRK2 inhibition. The study revealed that several
structural features of 1, such as the three acridine aromatic rings,
the presence of one or both methoxy groups, a three or four meth-
ylene tether between the thioether and the acridine, and a thioe-
ther or CH2 (but not an amine or ether) link to the acridine were
necessary for both haspin and DYRK2 inhibition. However, several
structural differences were noted that allowed generation of a po-
tent haspin kinase inhibitor LDN-209929 (33, IC50 <60 nM) with
180-fold selectivity verses DYRK2. In addition, a moderately potent
DYRK2 inhibitor LDN-211848 (41, IC50 <400 nM) with a 5.4-fold
selectivity verses haspin was also identified. Additional optimiza-
tion of the acridine series, potentially utilizing co-crystallization
of these inhibitors with haspin and DYRK2, might provide more po-
tent and selective inhibitors for both kinases. In addition, these
inhibitors will serve as valuable molecular probes to study the cel-
lular functions of these kinases and their potential roles in various
diseases.
12. Lochhead, P. A.; Sibbet, G.; Morrice, N.; Cleghon, V. Cell 2005, 121, 925.
13. Yoshida, K. Biochem. Pharmacol. 2008, 76, 1389.
14. Chih-Chien, K.; Klancer, R.; Singson, A.; Seydoux, G. Cell 2009, 139, 560.
15. Laguna, A.; Aranda, S.; Barallobre, M. J.; Barhoum, R.; Fernández, E.; Fotaki, V.;
Delabar, J. M.; de la Luna, S.; de la Villa, P.; Arbonés, M. L. Dev. Cell 2008, 15,
841.
16. Varjosola, M.; Borklund, M.; Cheng, F.; Syvänen, H.; Kivioja, T.; Kilpinen, S.; Sun,
Z.; Kallioniemi, O.; Stunnenberg, H. G.; He, W. W.; Ojala, P.; Taipale, J. Cell 2008,
133, 537.
17. Patnaik, D.; Xian, J.; Glicksman, M. A.; Cuny, G. D.; Stein, R. L.; Higgins, J. M. G. J.
Biomol. Screen. 2008, 13, 1025.
18. Orda-Zgadzaj, M.; Abraham, W. Synthesis 2007, 21, 3345.
19. Cava, M. P.; Levinson, M. I. Tetrahedron 1985, 41, 5061.
20. Joseph, J.; Kuruvilla, E.; Achuthan, A. T.; Ramaiah, D.; Schuster, G. B. Bioconjug.
Chem. 2004, 15, 1230.
21. Tasior, M.; Gryko, D. T. Heterocycles 2007, 71, 2735.
22. Jones, C. P.; Anderson, K. W.; Buchwald, S. L. J. Org. Chem. 2007, 72, 7968.
23. See Supplementary data for details.
IC50 = 22 nM for 1. The assay used full-length human haspin fused at the N-
terminus to GST and expressed using baculovirus, histone H3 peptide as
Acknowledgments
substrate and [ATP] of 100 lM.
25. Determined by Carna Biosciences. Full-length human DYRK2 fused at the N-
terminus to GST and expressed using baculovirus, DYRKtide-F as substrate and
The authors thank Partners Healthcare for financial support. This
work was also supported in part by NIH Grant R01CA122608 to
J.M.G.H.
[ATP] of 10 lM were used.