Organic Letters
Letter
nonclassical hydrogen bond interaction.13c Thus we believe
that zwitterion 4b might react with methanol to give
methoxide species C. The carbonyl oxygen of 5 might be
activated by the iminium cation of species C to give species D.
Subsequently, the methoxide might attack the carbonyl carbon
to give species E. The process might be slow with the relatively
bulkier EtOH, which might explain why a significant amount of
5 was detected for the reaction with EtOH (Scheme 3, eq 2).
Finally, retro-Claisen condensation15 by eliminating a molecule
of methyl acetate could furnish the desired α,α-dibromoamide
product 2 together with the regeneration of the zwitterionic
catalyst 4b. Thus, in this reaction, we believe that the
zwitterion might have dual roles: (1) promoting the
halogenation of β-oxo amides to α,α-dihalo-β-oxoamides and
(2) the synergistic activation of MeOH and the carbonyl of
α,α-dihalo-β-oxoamides in the deacylation process.
REFERENCES
■
(1) (a) Schumacher, D. P.; Clark, J. E.; Murphy, B. L.; Fischer, P. A.
J. Org. Chem. 1990, 55, 5291−5294. (b) Wu, G.; Schumacher, D. P.;
Tormos, W.; Clark, J. E.; Murphy, B. L. J. Org. Chem. 1997, 62, 2996−
2998. (c) Lu, W.; Chen, P.; Lin, G. Tetrahedron 2008, 64, 7822−
7827. (d) Wang, Z.; Li, F.; Zhao, L.; He, Q.; Chen, F.; Zheng, C.
Tetrahedron 2011, 67, 9199−9203.
(2) Wu, J.; Lawrence, N. J.; Sebti, S. M.; Lawrence, H. R. PCT Int.
Appl. WO 2007/117699, 2007.
(3) Dabholkar, V. V.; Parab, S. D. Indian J. Chem., Sect B 2007, 46,
195−200.
(4) (a) Park, J. N.; Ko, S. Y.; Koh, H. Y. Tetrahedron Lett. 2000, 41,
5553−5556. (b) Voloshchuk, N.; Lee, M. X.; Zhu, W. W.; Tanrikulu,
I. C.; Montclare, J. K. Bioorg. Med. Chem. Lett. 2007, 17, 5907−5911.
(5) Koeller, S.; Thomas, C.; Peruch, F.; Deffieux, A.; Massip, S.;
Leger, J. M.; Desvergne, J. P.; Milet, A.; Bibal, B. Chem. - Eur. J. 2014,
20, 2849−2859.
(6) (a) Hoffmann, O. L.; Kirkpatrick, J. L. U.S. Patent 4,279,636 A,
1981. (b) Pallos, F. M.; Brokke, M. E.; Arneklev, D. R. U.S. Patent
4,021,224 A, 1977.
In summary, a mild, efficient deacylative dihalogenation of
β-oxo amides has been developed. Instead of using a metal or
strong acid/base, a novel and stable zwitterionic catalyst was
employed in low catalyst loading. The reactions were operated
under mild conditions with easy-to-handle N-halosuccinimides
as the halogen sources.
(7) Dempsey, A. M.; Hough, L. Carbohydr. Res. 1975, 41, 63−76.
(8) (a) Fujii, I.; Tanaka, F.; Miyashita, H.; Tanimura, R.; Kinoshita,
K. J. Am. Chem. Soc. 1995, 117, 6199−6209. (b) Baldovini, N.;
̀
Bertrand, M.-P.; Carriere, A.; Nouguier, R.; Plancher, J.-M. J. Org.
Chem. 1996, 61, 3205−3208.
ASSOCIATED CONTENT
* Supporting Information
(9) (a) Wang, J.; Li, H.; Zhang, D.; Huang, P.; Wang, Z.; Zhang, R.;
Liang, Y.; Dong, D. Eur. J. Org. Chem. 2013, No. 24, 5376−5380.
(b) Liu, W.; Chen, C.; Qiu, H. Youji Huaxue 2015, 35, 450−454.
(c) Liu, W.-B.; Chen, C.; Zhang, Q.; Zhu, Z.-B. Beilstein J. Org. Chem.
2012, 8, 344−348. (d) Tan, L.; Liu, W.; Zhou, P.; Chen, C.; Zhang,
Q. Org. Chem.: Indian J. 2013, 9 (6), 249−256.
■
sı
The Supporting Information is available free of charge at
Experimental procedures and characterization data for
(10) McNaught, A. D.; Wilkinson, A. IUPAC. Compendium of
Chemical Terminology, 2nd ed.; Blackwell Scientific Publications:
Oxford, U.K., 1997.
AUTHOR INFORMATION
Corresponding Authors
̀
■
(11) For reviews, see: (a) Briere, J.; Oudeyer, S.; Dalla, V.; Levacher,
V. Chem. Soc. Rev. 2012, 41, 1696−1707. (b) Brak, K.; Jacobsen, E. N.
Angew. Chem., Int. Ed. 2013, 52, 534. (c) Qian, D.; Sun, J. Chem. - Eur.
J. 2019, 25, 3740. (d) Legros, F.; Oudeyer, S.; Levacher, V. Chem. Rec.
2017, 17, 429.
Zhihai Ke − Department of Chemistry and State Key Laboratory
of Synthetic Chemistry, The Chinese University of Hong Kong,
Ying-Yeung Yeung − Department of Chemistry and State Key
Laboratory of Synthetic Chemistry, The Chinese University of
(12) For selected examples, see: (a) Keillor, J. W.; Neverov, A. A.;
Brown, R. S. J. Am. Chem. Soc. 1994, 116, 4669−4673. (b) Kunz, K.;
MacMillan, W. C. J. Am. Chem. Soc. 2005, 127, 3240−3241.
(c) Ishihara, K.; Niwa, M.; Kosugi, Y. Org. Lett. 2008, 10, 2187.
(d) Uraguchi, D.; Koshimoto, K.; Ooi, T. J. Am. Chem. Soc. 2008, 130,
10878. (e) Zhou, Y.; Hu, S.; Ma, X.; Liang, S.; Jiang, T.; Han, B. J.
Mol. Catal. A: Chem. 2008, 284, 52−57. (f) Tsutsumi, Y.; Yamakawa,
K.; Yoshida, M.; Ema, T.; Sakai, T. Org. Lett. 2010, 12, 5728−5731.
(g) Uraguchi, D.; Koshimoto, K.; Miyake, S.; Ooi, T. Angew. Chem.,
Int. Ed. 2010, 49, 5567−5569. (h) Qiao, Y.; Zhang, L.; Luo, S.;
Cheng, J. Synlett 2011, 2011 (4), 495−498. (i) Uraguchi, D.;
Koshimoto, K.; Ooi, T. J. Am. Chem. Soc. 2012, 134, 6972−6975.
(j) Ohmatsu, K.; Ito, M.; Kunieda, T.; Ooi, T. Nat. Chem. 2012, 4,
473. (k) Zhang, W. Q.; Cheng, L. F.; Yu, C. J.; Gong, L. Z. Angew.
Chem., Int. Ed. 2012, 51, 4085−4088. (l) Claraz, A.; Landelle, G.;
Oudeyer, S.; Levacher, V. Eur. J. Org. Chem. 2013, 2013, 7693−7696.
(m) Yanai, H.; Ishii, N.; Matsumoto, T.; Taguchi, T. Asian J. Org.
Chem. 2013, 2, 989−996. (n) Yanai, H.; Yoshino, T.; Fujita, M.;
Fukaya, H.; Kotani, A.; Kusu, F.; Taguchi, T. Angew. Chem., Int. Ed.
2013, 52, 1560−1563. (o) Guillerm, B.; Lemaur, V.; Cornil, J.;
Lazzaroni, R.; Dubois, P.; Coulembier, O. Chem. Commun. 2014, 50,
10098−10101. (p) Sun, J.; Yao, X.; Cheng, W.; Zhang, S. Green Chem.
2014, 16, 3297−3304. (q) Uraguchi, D.; Oyaizu, K.; Noguchi, H.;
Ooi, T. Chem. - Asian J. 2015, 10, 334−337. (r) Yanai, H.; Sasaki, Y.;
Yamamoto, Y.; Matsumoto, T. Synlett 2015, 26, 2457−2461.
(s) Chakraborty Ghosal, N.; Santra, S.; Das, S.; Hajra, A.;
Zyryanov, G. V.; Majee, A. Green Chem. 2016, 18, 565. (t) Zhou,
X.; Wu, Y.; Deng, L. J. Am. Chem. Soc. 2016, 138, 12297. (u) Xie, C.;
Song, J.; Wu, H.; Zhou, B.; Wu, C.; Han, B. ACS Sustainable Chem.
Eng. 2017, 5, 7086. (v) Liu, X.-F.; Li, X.-Y.; Qiao, C.; Fu, H.-C.; He,
Authors
Ying-Pong Lam − Department of Chemistry and State Key
Laboratory of Synthetic Chemistry, The Chinese University of
Hong Kong, Shatin, Hong Kong
Kin-San Chan − Department of Chemistry and State Key
Laboratory of Synthetic Chemistry, The Chinese University of
Hong Kong, Shatin, Hong Kong
Complete contact information is available at:
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge the financial support from the Research
Grants Council of the Hong Kong Special Administration
Region (project no. CUHK14305520), The Chinese Uni-
versity of Hong Kong Direct Grant (project no. 4053394), and
the Innovation and Technology Commission to the State Key
Laboratory of Synthetic Chemistry (GHP/004/16GD).
D
Org. Lett. XXXX, XXX, XXX−XXX