R. Rios et al. / Tetrahedron Letters 43 (2002) 1023–1026
1025
reagent for the reduction of 4b) led to exclusive forma-
tion of the saturated ketone 8a. Finally, when both 6a
and 6b were submitted to acid-catalysed dehydration,
the rather unstable, chirally-substituted cyclopentadi-
enes 7a and 7b were obtained in good yields (73 and
79%, respectively).
6. (a) Fonquerna, S.; Moyano, A.; Perica`s, M. A.; Riera, A.
Tetrahedron 1995, 51, 4239–4254; (b) Fonquerna, S.;
Moyano, A.; Perica`s, M. A.; Riera, A. J. Am. Chem. Soc.
1997, 119, 10225–10226; (c) Balsells, J.; Moyano, A.;
Riera, A.; Perica`s, M. A. Org. Lett. 1999, 1, 1981–1984.
7. Fonquerna, S.; Rios, R.; Moyano, A.; Perica`s, M. A.;
Riera, A. Eur. J. Org. Chem. 1999, 3459–3478.
In summary, we have disclosed a short, high-yielding
route to chirally-substituted cyclopentadienes, that
takes place in only four steps from readily available
chiral amines.15,16 Ongoing work in our laboratories is
directed towards the preparation of enantiopure metal
complexes derived from these ligands.17
8. Gemal, A. L.; Luche, J.-L. J. Org. Chem. 1974, 23,
4187–4189.
9. Fisher, G. B.; Harrison, J.; Fuller, J. C.; Goralski, C. T.;
Singaram, B. Tetrahedron Lett. 1992, 33, 4533–4536.
10. Enders, D.; Fey, H.; Kipphardt, H. Org. Synth. 1987, 65,
173–182.
11. Coppola, G. M.; Damon, R. E. Synth. Commun. 1993,
23, 2003–2010.
Acknowledgements
12. For the use of DMSO as a promoter of the Pauson–
Khand reaction, see: (a) Chung, Y. K.; Lee, B. Y.; Jeong,
N.; Hudecek, M.; Pauson, P. L. Organometallics 1993,
12, 220–223; (b) Stumpf, A.; Jeong, N.; Sunghee, H.
Synlett 1997, 205–207.
We are grateful to DGI/DGES (grants BQU2000-0648
and PB96-0376) for financial support. R.R. thanks the
Ministerio de Educacio´n y Cultura for a pre-doctoral
fellowship.
13. The (E) stereochemistry of compounds 5a and 5b was
ascertained by means of NOE experiments.
14. For previous reports on the formation of exocyclic 1,3-
dienes in Pauson–Khand cyclisations of enynes, see: (a)
Shambayati, S.; Crowe, W. E.; Schreiber, S. L. Tetra-
hedron Lett. 1990, 31, 5289–5292; (b) Krafft, M. E.;
Wilson, A. M.; Dasse, O. A.; Bon˜aga, L. V. R.; Cheung,
Y. Y.; Fu, Z.; Shao, B.; Scott, I. Tetrahedron Lett. 1998,
39, 5911–5914; (c) Mukai, C.; Kim, J. S.; Sonobe, H.;
Hanaoka, M. J. Org. Chem. 1999, 64, 6822–6832; (d)
Pagenkopf, B. L.; Belanger, D.; O’Mahony, D. J. R.;
Livinghouse, T. Synthesis 2000, 1009–1019; (e) Jeong, N.;
Sung, B. K.; Choi, Y. K. J. Am. Chem. Soc. 2000, 122,
6771–6772.
References
1. (a) Coates, G. W.; Waymouth, R. M. In: Comprehensive
Organometallic Chemistry II; Abel, E. W.; Stone, F. G.
A.; Wilkinson, G.; Hegedus, L. S., Eds.; Pergamon Press:
Oxford, 1995; Vol. 12, Chapter 12, pp. 1193–1208; (b)
Applied Homogeneous Catalysis with Organometallic
Compounds; Cornils, B.; Herrmann, W. A., Eds.; VCH:
Weinheim, 1996; (c) Metallocenes; Togni, A.; Halterman,
R. L., Eds.; Wiley-VCH: New York, Weinheim, 1998; (d)
Comprehensive Asymmetric Catalysis; Jacobsen, E. N.;
Pfaltz, A.; Yamamoto, H., Eds.; Springer-Verlag: Berlin,
Heidelberg, New York, 1999 (3 Vols.).
15. All previously unknown compounds were completely
characterised and gave satisfactory spectral and/or ana-
lytical data. Selected data: (3a) 1H NMR (300 MHz,
CDCl3, TMS): l=5.9–5.7 (m, 1H), 5.1–4.9 (m, 2H), 4.25
(m, 1H), 3.75–3.4 (m, 4H), 3.36/3.34* (s, 3H), 2.35 (m,
2H), 2.2–1.8 (m, 6H), 1.7–1.5 (m, 4H) ppm; 13C NMR
(75 MHz, CDCl3, TMS): l=153.2/153.1* (Cq), 138.2
(CH), 114.8/114.7* (CH2), 91.3/91.1* (Cq), 75.2/75.1*
(Cq), 73.7/72.0* (CH2), 59.6 (CH3), 58.2/58.1* (CH), 48.8
(CH2), 45.5 (CH2), 33.00/32.98* (CH2), 27.91/27.87*
(CH2), 27.15/27.12* (CH2), 23.6/22.4 (CH2), 18.6 (CH2)
ppm; IR (NaCl): w=2242, 1744, 1626 cm−1; MS (CI,
NH3) m/e: 250 (M+1, 100%), 267 (M+18, 6%). HRMS
calcd for C15H24NO2: 250.1807. Found: 250.1811. (3b) 1H
NMR (300 MHz, CDCl3, TMS): l=7.4–7.2 (m, 5H),
6.2–6.1 (br, 1H), 5.9–5.7 (m, 1H), 5.2 (m, 1H), 5.1–4.9
(m, 2H), 2.27 (t, J=7.2 Hz, 2H), 2.1 (m, 4H), 1.6–1.4 (m,
5H) ppm; 13C NMR (75 MHz, CDCl3, TMS): l=152.6
(Cq), 138.2 (CH), 128.7 (CH), 127.5 (CH), 126.2 (CH),
125.7 (Cq), 114.8 (CH2), 87.2 (Cq), 75.9 (Cq), 49.1 (CH),
33.0 (CH2), 27.9 (CH2), 27.1 (CH2), 21.4 (CH2), 18.4
2. (a) Okuda, J. Top. Curr. Chem. 1991, 160, 97–145; (b)
Halterman, R. L. Chem. Rev. 1992, 92, 965–994.
3. Reviews on the Pauson–Khand reaction: (a) Schore, N.
E. Org. React. 1991, 40, 1–90; (b) Geis, O.; Schmalz, H.
G. Angew. Chem., Int. Ed. Engl. 1998, 37, 911–914; (c)
Buchwald, S. L.; Hicks, F. A. In Comprehensive Asym-
metric Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto,
H., Eds.; Springer-Verlag: Berlin, Heidelberg, New York,
1999; Vol. II, pp. 491–510; (d) Brummond, K. M.; Kent,
J. L. Tetrahedron 2000, 56, 3263–3283; (e) Sugihara, T.;
Yamaguchi, M.; Nishizawa, M. Chem. Eur. J. 2001, 7,
1589–1595.
4. (a) Buchholz, H.; Reiser, O.; de Meijere, A. Synlett 1991,
20–23; (b) Lee, B. Y.; Moon, H.; Chung, Y. K.; Jeong,
N.; Carpenter, G. B. Organometallics 1993, 12, 3879–
3884; (c) Lee, B. Y.; Moon, H.; Chung, Y. K. J. Am.
Chem. Soc. 1994, 116, 2163–2164; (d) Halterman, R. L.;
Ramsey, T. R.; Paides, N. A.; Khan, M. A. J.
Organomet. Chem. 1995, 497, 43–53; (e) Kang, Y. K.;
Lee, H.-K.; Lee, S. S.; Chung, Y. K.; Carpenter, G.
Inorg. Chim. Acta 1997, 261, 37–44; (f) Halterman, R. L.;
Ramsey, T. R. J. Organomet. Chem. 1997, 530, 225–234;
(g) Grossman, R. B. Tetrahedron 1999, 55, 919–934.
5. For the application of Negishi’s zirconium-mediated
enyne cyclisation to the synthesis of achiral substituted
cyclopentadienes, see: Takahashi, T.; Xi, Z.; Kotora, M.;
Xi, Ch. Tetrahedron Lett. 1996, 37, 7521–7524.
(CH2) ppm; IR (NaCl): w=3260, 2242, 1628, 1537 cm−1
;
MS (CI, NH3) m/e: 256 (M+1, 60%), 273 (M+18, 100%).
HRMS calcd for C17H22NO: 256.1701. Found: 256.1696.
1
(4a) H NMR (300 MHz, CDCl3, TMS): l=4.3–4.2 (m,
1H), 3.9–3.1 (m, 7H), 3.0–2.8 (m, 1H), 2.7–2.5 (m, 2H),
2.3–2.1 (m, 2H), 2.0–1.7 (m, 7H), 1.6–1.3 (m, 2H), 1.3–1.1
(m, 1H) ppm; 13C NMR (75 MHz, CDCl3, TMS): l=
203.6/203.3* (Cq), 181.9/181.8* (Cq), 164.0/163.9* (Cq),