10.1002/chem.201900903
Chemistry - A European Journal
COMMUNICATION
[3]
[4]
a) H. M. Walborsky, G. E. Nizik, J. Am. Chem. Soc. 1969, 91, 7778;
b) H. M. Walborsky, W. H. Morrison, G. E. Nizik, J. Am. Chem. Soc. 1970,
92, 6675-6676; c) G. E. Niznik, W. H. Morrison, H. M. Walborsky, J. Org.
Chem. 1974, 39, 600-604; d) H. M. Walborsky, P. Ronman, J. Org. Chem.
1978, 43, 731-734; e) M. J. Marks, H. M. Walborsky, J. Org. Chem. 1982,
47, 52-56; f) M. J. Marks, H. M. Walborsky, J. Org. Chem. 1981, 46,
5405-5407.
Finally, we extended the one-pot procedure to reactions with
various other electrophiles (Table 3). Thus, by using alkyl and aryl
ketones, we have achieved the formation of the -hydroxy
ketones 7a – 7c in 40 – 58% yield (entries 1 – 3). In the case of
diethyl carbonate the cleavage of the imino function was achieved
using 3 M aqueous HCl in order to avoid the decomposition of
resulting -keto ester 7d (entry 4). The cleavage of the imino bond
in the thioimidate 4b required concentrated aqueous HCl, leading
to the formation of the thioester 7e in 67% yield (entry 5).
In summary, we have reported an efficient addition of
organomagnesium halides to 2,4,6-trichlorophenyl isocyanide (1).
This isocyanide gave much better results than related aryl
isocyanides.[5] Quenching reactions with Weinreb amides as well
as ketones provided the desired functionalized carbonyl
derivatives (1,2-diketones of type 6 and -hydroxy ketones
7a – 7c). Further extensions of this method are underway.
a) Y. Ito, K. Kobayashi, N. Seko, T. Saegusa, Bull. Chem. Soc. Jpn. 1984,
57, 73-84; b) Y. Ito, E. Ihara, M. Hirai, H. Ohsaki, A. Ohnishi,
M. Murakami, J. Chem. Soc., Chem. Commun. 1990, 21, 403-405;
c) Y. Ito, E. Ihara, M. Murakami, M. Shiroo J. Am. Chem. Soc. 1990, 112,
6446-6447; d) J. Ichikawa, Y. Wada, H. Miyazaki, T. Mori, H. Kuroki, Org.
Lett. 2003, 5, 1455-1458; e) K. Kobayashi, Y. Okamura, S. Fukamachi,
H. Konishi, Tetrahedron 2010, 66, 7961-7964; f) K. Kobayashi, I. Nozawa,
Tetrahedron 2015, 71, 4604-4607; g) Y. Li, A. Chao; F. F. Fleming, Chem.
Commun. 2016, 52, 2111-2113.
[5]
[6]
For a detailed screening see supporting information.
a) F. M. Piller, P. Appukkuttan, A. Gavryushin, M. Helm, P. Knochel,
Angew. Chem. Int. Ed. 2008, 47, 6802; b) A. Metzger, F. M. Piller,
P. Knochel, Chem. Commun. 2008, 5824; c) A. Krasovskiy, V. Malakhov,
A. Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 6040;
d) N. Boudet, S. Sase, P. Sinha, C.-Y. Liu, A. Krasovskiy, P. Knochel,
J. Am. Chem. Soc. 2007, 129, 12358; e) A. Metzger, M. A. Schade,
P. Knochel, Org. Lett. 2008, 10, 1107; f) Y.-H. Chen, P. Knochel, Angew.
Chem. Int. Ed. 2008, 47, 7648; g) Y.-H. Chen, M. Sun, P. Knochel,
Angew. Chem. Int. Ed. 2009, 48, 2236.
Acknowledgements
We wish to thank the Ludwig-Maximilians-Universität München
for financial support. We also thank Albemarle (Germany) for the
generous gift of chemicals.
[7]
[8]
K. Fujiki, N. Tanifuji, Y. Sasaki, T. Yokoyama, Synthesis 2002, 3,
343-348.
Keywords: Organomagnesium halides • Isocyanides •
CCDC 1899170 (4b) contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre.
Magnesium aldimines • Weinreb amides• 1,2-Diketones
[9]
a) S. Nahm, S. M. Weinreb, Tetrahedron Lett. 1981, 22, 3815-3818;
b) S. Balasubramaniam, I. S. Aidhen, Synthesis 2008, 23, 3707-3738.
[1]
[2]
a) A. Dömling, I. Ugi, Angew. Chem. Int. Ed. 2000, 39, 3168-3210;
b) A. V. Lygin, A. de Meijere, Angew. Chem. Int. Ed. 2010, 49, 9094-
9124; c) A. Dömling, Y. Huang, Synthesis 2010, 17, 2859-2883;
d) M. Gao, C He, H. Chen, R. Bai, B. Cheng, A. Lei, Angew. Chem. Int.
Ed. 2013, 52, 6958-6961; e) S. Sadjadi, M. M. Heravi, N. Nazari, RCS
Adv. 2016, 6, 53203-53272.
[10] F. M. Piller, A. Metzger, M. A. Schade, B. A. Haag, A. Gavryushin,
P. Knochel, Chem. Eur. J. 2009, 15, 7192.
R. Ramozzi, N. Chéron, B. Braïda, P. C. Hiberty, P. Fleurat-Lessard,
New J. Chem. 2012, 36, 1137-1140.
This article is protected by copyright. All rights reserved.