Kim et al.
investigations of titanium alkoxides as potential catalysts in
LA polymerization had been reported.9 Interestingly, such
compounds are well-known to homogeneously catalyze olefin
polymerization,10 and some Ti complexes have been found
to polymerize CL.11 Recently, we9 reported that several
titanium alkoxides showed reasonably good catalytic activity
in the bulk homopolymerization of l-LA and rac-LA at 130
°C. Harada et al.11d also reported the living polymerization
of LA by a Ti chloride complex, whose chloride apparently
plays the same role as an alkoxide.
We thus believed it would be interesting to test titanium
catalysts with well-defined ligand environments amenable
to systematic variation, thus potentially facilitating more
control of the molecular and physical properties of the PLA
produced. Here, we describe discrete titanium alkoxide
complexes for the study of the ROP of LA and CL under
bulk and solution polymerization conditions. We also
demonstrate that some of our titanium alkoxide catalysts
allow well-controlled polymerizations of LA and CL, and
that some of these catalysts give heterotactic-biased PLA
derived from rac-LA.
The strategy we employed for choosing candidate titanium
catalysts 1-14 is that, first of all, they should contain
alkoxide groups, because such metal substituents have proven
to be the initiation group of choice in the vast majority of
previous studies. Second, the initiating alkoxide group should
dissociate relatively easily from the titanium in the early stage
of polymerization so that it can be utilized to initiate LA
polymerization and provide a means of controlling the
molecular weight by functioning as an end group. Alkoxy
titanatranes seemed well-suited to these purposes because
they possess a transannular Ti-N bond that could potentially
labilize the trans axial OR group.
(4) (a) Dubois, P.; Jacobs, C.; Jerome, R.; Teyssie, P. Macromolecules
1991, 24, 2266. (b) Spassky, N.; Wisniewski, M.; Pluta, C.; Le Borgne,
A. Macromol. Chem. Phys. 1996, 197, 2627. (c) Kowalski, A.; Duda,
A.; Penczek, S. Macromolecules 1998, 31, 2114. (d) Emig, N.;
Nguyen, H.; Krautscheid, H.; Re´au, R.; Cazaux, J.-B.; Bertrand, G.
Organometallics 1998, 17, 3599. (e) Cameron, P. A.; Jhurry, D.;
Gibson, V. C.; White, A. J. P.; Williams, D. J.; Williams, S. Macromol.
Rapid Commun. 1999, 20, 616. (f) Ovitt, T. M.; Coates, G. W. J. Am.
Chem. Soc. 1999, 121, 4072. (g) Eguiburu, J. L.; Fernandez-Berridi,
M. J.; Coss´ıo, F. P.; Roma´n, J. S. Macromolecules 1999, 32, 8252.
(h) Ko, B. T.; Lin, C. C. Macromolecules 1999, 32, 8296. (i) Bhaw-
Luximon, A.; Jhurry, D.; Spassky, N. Polym. Bull. 2000, 44, 31. (j)
Kitayama, T.; Yamaguchi, H.; Kanzawa, T.; Hirano, T. Polym. Bull.
2000, 45, 97. (k) Radano, C. P.; Baker, G. L.; Smith, M. R. J. Am.
Chem. Soc. 2000, 122, 1552. (l) Ovitt, T. M.; Coates, G. W. J. Polym.
Sci., Part A: Polym. Chem. 2000, 38, 4686. (m) Jhurry, D.; Bhaw-
Luximon, A.; Spassky, N. Macromol. Symp. 2001, 175, 67. (n) Huang,
C. H.; Wang, F. C.; Ko, B. T.; Yu, T. L.; Lin, C. C. Macromolecules
2001, 34, 356. (o) Chen, H. L.; Ko, B. T.; Huang, B. H.; Lin, C. C.
Organometallics 2001, 20, 5076. (p) Liu, Y. C.; Ko, B. T.; Lin, C. C.
Macromolecules 2001, 34, 6196. (q) Chisholm, M. H.; Navarro-Llobet,
D.; Simonsick, W. J., Jr. Macromolecules 2001, 34, 8851. (r) Ovitt,
T. M.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 1316. (s) Nomura,
N.; Ishii, R.; Akakura, M.; Aoi, K. J. Am. Chem. Soc. 2002, 124,
5938.
(5) (a) Chisholm, M. H.; Eilerts, N. W. Chem. Commun. 1996, 853. (b)
Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.; Coates, G. W. J. Am.
Chem. Soc. 1999, 121, 11583. (c) Chisholm. M. H.; Eilerts, N. W.;
Huffman, J. C.; Iyer, S. S.; Pacold, M.; Phomphrai, K. J. Am. Chem.
Soc. 2000, 122, 11845. (d) Chisholm, M. H.; Huffman, J. C.;
Phomphrai, K. J. Chem. Soc., Dalton Trans. 2001, 222. (e) Cham-
berlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky,
E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 3229. (f) Chisholm,
M. H.; Gallucci, J. C.; Zhen, H. Inorg. Chem. 2001, 40, 5051. (g)
Chisholm, M. H.; Navarro-Llobet, D.; Gallucci, J. Inorg. Chem. 2001,
40, 6506.
(6) (a) Stolt, M.; Sodergard, A. Macromolecules 1999, 32, 6412. (b)
O’Keefe, B. J.; Monnier, S. M.; Hillmyer, M. A.; Tolman, W. B. J.
Am. Chem. Soc. 2001, 123, 339. (c) O’Keefe, B. J.; Breyfogle, L. E.;
Hillmyer, M. A.; Tolman, W. B. J. Am. Chem. Soc. 2002, 124, 4384.
(7) (a) Stevels, W. M.; Ankone, M. J. K.; Dijkstra, P. J.; Feijen, J.
Macromolecules 1996, 29, 3332. (b) Stevels, W. M.; Ankone, M. J.
K.; Dijkstra, P. J.; Feijen, J. Macromolecules 1996, 29, 6132. (c) Simic,
V.; Spassky, N.; Hubert-Pfalzgraf, L. G. Macromolecules 1997, 30,
7338. (d) Chamberlain, B. M.; Sun, Y.; Hagadorn, J. R.; Hemmesch,
E. W.; Young, V. G., Jr.; Pink, M.; Hillmyer, M. A.; Tolman, W. B.
Macromolecules 1999, 32, 2400. (e) Yuan, M.; Xiong, C.; Li, X.;
Deng, X. J. Appl. Polym. Sci. 1999, 73, 2857. (f) Simic, V.; Pensec,
S.; Spassky, N. Macromol. Symp. 2000, 153, 109. (g) Deng, X.; Yuan,
M.; Li, X.; Xiong, C. Eur. Polym. J. 2000, 36, 1151. (h) Spassky, N.;
Simic, V.; Montaudo, M. S.; Hubert-Pfalzgraf, L. G. Macromol. Chem.
Phys. 2000, 201, 2432. (i) Chamberlain, B. M.; Jazdzewski, B. A.;
Pink, M.; Hillmyer, M. A.; Tolman, W. B. Macromolecules 2000,
33, 3970. (j) Aubrecht, K. B.; Chang, K.; Hillmyer, M. A.; Tolman,
W. B. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 284. (k)
Giesbrecht, G. R.; Whitener, G. D.; Arnold, J. J. Chem. Soc., Dalton
Trans. 2001, 923. (l) Save, M.; Schappacher, M.; Soum, A. Macromol.
Chem. Phys. 2002, 203, 889.
(8) Ko, B.-T.; Lin, C.-C. J. Am. Chem. Soc. 2001, 123, 7973.
(9) (a) Kim, Y.; Verkade, J. G. Organometallics 2002, 21, 2395. (b) Kim,
Y.; Kapoor, P. N.; Verkade, J. G. Inorg. Chem. 2002, 41, 4834. (c)
Kim, Y.; Verkade, J. G. Macromol. Rapid Commun. 2002, 23, 917.
(d) Kim, Y.; Verkade, J. G. In preparation.
(10) Gladysz, J. A., Ed. Chem. ReV. 2000, 100, 1167-1682.
(11) (a) Okuda, J.; Rushkin, I. L. Macromolecules 1993, 26, 5530. (b)
Takeuchi, D.; Nakamura, T.; Aida, T. Macromolecules 2000, 33, 725.
(c) Takeuchi, D.; Aida, T. Macromolecules 2000, 33, 4607. (d)
Takashima, Y.; Nakayama, Y.; Watanabe, K.; Itono, T.; Ueyama, N.;
Nakamura, A.; Yasuda, H.; Harada, A.; Okuda, J. Macromolecules
2002, 35, 7538.
Results and Discussion
Syntheses. Except for minor modifications (see Experi-
mental Section), compounds 2-4 were obtained by the
reaction of 1 with the appropriate amount of TiCl4 in pentane
at room temperature.12 Unlike slightly viscous 2, compounds
3 and 4 precipitated as white solids within 20 min after
combination of the reactants. To avoid generation of byprod-
ucts and mixtures of 2-4, a solution of TiCl4 in dry pentane
was added dropwise to exactly the appropriate number of
equivalents of 1 in pentane while stirring rapidly at room
(12) Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995,
28, 5671.
1438 Inorganic Chemistry, Vol. 42, No. 5, 2003