884
K.-T. LIU ET AL.
M.-L. Tsao, J. Org. Chem. 57, 3041 (1992).
9. J. Kaspi and Z. Rappoport, J. Am. Chem. Soc. 102, 3829
(1980).
10. (a) K.-T. Liu, P.-S. Chen, P.-F. Chiu and M.-L. Tsao,
Tetrahedron Lett. 33, 6499 (1992); (b) K.-T. Liu, P.-S. Chen,
C.-R. Hu and H.-C. Sheu, J. Phys. Org. Chem. 6, 122, 433
(1993).
11. (a) K.-T. Liu, L.-W. Chang and P.-S. Chen, J. Org. Chem. 57,
4791 (1992); (b) K.-T. Liu and P.-S. Chen, J. Chem. Res. (S)
310 (1994).
12. (a) D. N. Kevill and M. J. D’Souza, J. Phys. Org. Chem. 5, 287
(1992); (b) D. N. Kevill and M. J. D’Souza, J. Phys. Org.
Chem. 6, 642 (1993); (c) D. N. Kevill and M. J. D’Souza, J.
Chem. Res. (S) 332 (1993).
13. (a) D. N. Kevill, N. HJ Ismail and M. J. D’Souza, J. Org.
Chem. 59, 6303 (1994); (b) D. N. Kevill and M. J. D’Souza, J.
Chem. Soc., Perkin Trans. 2 973 (1995); (c) D. N. Kevill and
M. J. D’Souza, J. Chem. Res. (M) 1649 (1996).
in methanol to form the desired alcohol, followed by
chlorination with thionyl chloride in carbon tetrachloride.
The resultant chloride was purified by recrystallization or by
column chromatography on triethylamine-washed silica gel
with hexane–ethyl acetate as eluent. 1-Chloro-1-(4-methyl-
phenyl)ethane (4a),15a 1-chloro-1-(4-methylphenyl)propane
(4b),25 1-chloro-2-methyl-1-(4-methylphenyl)propane (4c)26
and 1-chloro-1-(4-methoxyphenyl)ethane (5)15a were
obtained in the pure liquid state and 1-chloro-2,2-dimethyl-
1-(4-methylphenyl)propane (4d)27 was isolated as a solid,
m.p. 28–29 °C. Their IR and proton and carbon NMR data
were found to be in line with the assigned structures.
The ␣-trideuteriomethyl compounds 4a-d3 and 5-d3 were
prepared by Grignard reaction of methyl-d3-magnesium
iodide (99% isotopically pure) with the corresponding
benzaldehyde, followed by the treatment of the resultant
alcohol with thionyl chloride.
14. (a) K.-T. Liu, J. Chem. Soc., Perkin Trans. 2 327 (1996); (b)
K.-T. Liu, C.-P. Chin, Y.-S. Lin and M.-L. Tsao, J. Chem. Res.
(S) 18 (1997).
Kinetic measurements. Conductimetric rate constants
15. For examples, see (a) V. J. Shiner, Jr, W. E. Buddenbaum, B. L.
Murr and G. Lamaty, J. Am. Chem. Soc. 90, 418 (1968); (b) Y.
Tsuno, Y. Kusuyama, M. Sawada, T. Fujii and Y. Yukawa, Bull
Chem. Soc. Jpn. 48, 3337 (1975); (c) J. P. Richard, M. E.
Rothenberg and W. P. Jencks, J. Am. Chem. Soc. 106, 1361
(1984); (d) D. J. McLennan, A. R. Stein and B. Dobson, Can.
J. Chem. 64, 1201 (1986); (e) I. Lee, W. H. Lee and H. W. Lee,
J. Phys. Org. Chem. 6, 361 (1993); (f) T. W. Bentley, M.
Christl, R. Kemmer, G. Llewellyn and J. E. Oakley, J. Chem.
Soc., Perkin Trans. 2 2531 (1994).
were measured for general solvolytic studies. The con-
ductivity cells were placed in
temperature variation of ±0·02 °C.
1ϫ10Ϫ4–2ϫ10Ϫ5
was used. In some cases, a small
a
thermostat with
a
A
solution of
M
amount (0·1%) of 2,6-lutidine was added to the solution to
prevent curvature of the rate constant plot. For studying the
kinetic isotope effect, the solvolyses of the isotopic pairs
were run side-by-side in the same thermostat. The potentio-
metric titration method was employed in the study of salt
16. For examples, see (a) S. Winstein and B. K. Morse, J. Am.
Chem. Soc. 74, 1133 (1952); (b) T. Kinoshita, H. Ueda and K.
Takeuchi, J. Chem. Soc., Perkin Trans 2 603 (1993).
17. K. Yatsugi, I. Akasaka, Y. Tsuji, S.-H. Kim, S.-D. Yoh, N.
Sugiyama, M. Mishima, M. Fujio and Y. Tsuno, Tetrahedron
Lett. 35, 135 (1994).
effects. The concentration of substrate was 0·003–0·005 .
M
ACKNOWLEDGEMENTS
We are grateful to the National Science Council, Republic
of China, for financial support of this research, and to Mr
Hung-I Chen for checking some rate data.
18. D. N. Kevill and S. W. Anderson, J. Org. Chem. 56, 1845
(1991).
19. For definition, see H. H. Jaffe, Chem. Rev. 53, 191 (1953).
20. For examples of pioneering work, see (a) D. J. Raber, J. M.
Harris, R. E. Hall and P. v. R. Schleyer, J. Am. Chem. Soc. 93,
4821 (1971); (b) R. A. Sneen, Acc. Chem. Res. 6, 46 (1973).
21. C. J. Collins and N. S. Bowman (Eds) Isotope Effects in
Chemical Reactions, ACS Monograph No. 167. Van Nostrand
Reinhold, New York (1970).
REFERENCES
1. E. Grunwald and S. Winstein, J. Am. Chem. Soc. 70, 846
(1948).
2. S. Winstein, E. Grunwald and H. W. Jones, J. Am. Chem. Soc.
73, 2700 (1951).
3. For review, see: C. Reichardt, Solvents and Solvent Effects in
Organic Chemistry, 2nd ed. Chapt. 7. VCH, Weinheim (1988).
4. For the latest review, see T. W. Bentley and G. Llewellyn, Prog.
Phys. Org. Chem. 17, 121 (1990).
5. K.-T. Liu and H.-C. Sheu, J. Chin. Chem. Soc. 38, 29 (1991).
6. (a)K.-T. Liu, H.-C. Sheu, H.-I Chiu and C.-R. Hu, Tetrahedron
Lett. 25, 3611 (1990); (b) K.-T. Liu and H.-C. Sheu, J. Org.
Chem. 56, 3021 (1991).
22. D. E. Sunko and W. J. Hehre, Prog. Phys. Org. Chem. 14, 205
(1983).
23. K.-T. Liu and M.-Y. Kuo, Tetrahedron 44, 3523 (1988).
24. D. D. Perrin and W. L. F. Armarego, Purification of Laboratory
Chemicals, 3rd ed. Pergamon Press, New York (1988).
25. S. Cabiddu, A. Maccioni, M. Secci and F. Sotgiu, Ann. Chim.
(Rome) 63, 675 (1973); Chem. Abstr. 82, 72594n (1975).
26. NV Naarden International, Neth. Pat. Appl 78 02 038 (1978);
Chem. Abstr. 90, 71951e (1979).
7. K.-T. Liu, H.-I Chen and C.-P. Chin, J. Phys. Org. Chem. 4,
463 (1991).
8. K.-T. Liu, J.-S. Yang, S.-M. Chang, Y.-S. Lin, H.-C. Sheu and
27. M. R. Nair and S. W. Nair, Indian J. Chem. 19B, 1091 (1980);
Chem. Abstr. 91, 180459n (1980).
© 1997 John Wiley & Sons, Ltd.
JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, VOL. 10, 879–884 (1997)