Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 5
ARTICLE
Journal Name
amidation method is extremely competitive for use in large
scale preparations (e.g. a typical PMI for stoichiometric
amidation reactions used in the synthesis of pharmaceutical
intermediates is ~437a).
Notes and references
DOI: 10.1039/C9OB01012B
§Analysis of the reaction mixture and Dean-Stark trap by 19F NMR
indicated that in tBuOAc, 49% of the CF3CH2OR group remained in
the reaction mixture after 24 h (cf 78% in TAME4g). In contrast,
n
analysis of an amidation performed in BuOAc showed that only
16% of the CF3CH2OR group remained in the reaction mixture
after 24 h. Minor additional signals could be seen in the 19F NMR
Conclusions
t
n
spectrum of the BuOAc reaction, whereas in BuOAc multiple
species were present at significant concentration. See
supplementary information for further details.
We have demonstrated that tert-butyl acetate is a very effective
solvent for B(OCH2CF3)3-catalysed direct amidation reactions.
These conditions were found to be particularly effective for
challenging pharmaceutically relevant substrates including
carboxylic acids containing polar heterocycles, as well as
electron-deficient anilines and aminoheterocycles. The
reactions can be run at 1 M concentration, and the amides can
typically be purified using a simple resin-based filtration process
which has low solvent requirements. A 100 mmol synthesis of
an amide yielded >20 g of product with process mass intensity
of 8. tert-Butyl acetate is a readily available low-cost solvent,
produced industrially from acetic acid and isobutylene, which
has a good safety profile9 making it potentially suitable for
widespread use in catalytic direct amidation reactions.
‡We have previously noted that 2-aminopyridine (amide 14)
shows low reactivity in stoichiometric BOCH2CF3)3 amidation
reactions.4e Others have recently noted that sterically
encumbered (amides 8-10) or electron-deficient (amides 11-13)
anilines were particularly challenging substrates for catalytic
amidation reactions.5a
1
(a) J. S. Carey, D. Laffan, C. Thomson and M. T. Williams, Org.
Biomol. Chem., 2006, 4, 2337; (b) L. Amarnath, I. Andrews, R.
Bandichhor, A. Bhattacharya, P. Dunn, J. Hayler, W. Hinkley,
N. Holub, D. Hughes, L. Humphreys, B. Kaptein, H. Krishnen, K.
Lorenz, S. Mathew, G. Nagaraju, T. Rammeloo, P. Richardson,
L. Wang, A. Wells and T. White, Org. Process Res. Dev., 2012,
16, 535; (c) M. C. Bryan, P. J. Dunn, D. Entwistle, F. Gallou, S.
G. Koenig, J. D. Hayler, M. R. Hickey, S. Hughes, M. E. Kopach,
G. Moine, P. Richardson, F. Roschangar, A. Steven and F. J.
Weiberth, Green Chem., 2018, 20, 5082; (d) D. J. C. Constable,
P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L. Leazer Jr., R. J.
Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A. Wells, A.
Zaks and T. Y. Zhang, Green Chem., 2007, 9, 411.
For recently reported stoichiometric amidation methods, see:
(a) T. Krause, S. Baader, B. Erb, L. J. Gooen, Nat. Commun.,
2016, 7, 11732; (b) L. Hu, S. Xu, Z. Zhao, Y. Yang, Z. Peng, M.
Yang, C. Wang, J. Zhao, J. Am. Chem. Soc., 2016, 138, 13135;
(c) X. Xu, H. Feng, L. Huang, X. Liu, J. Org. Chem., 2018, 83,
7962; (d) D. C. Braddock, P. D. Lickiss, B. C. Rowley, D. Pugh, T.
Purnomo, G. Santhakumar, S. J. Fussel, Org. Lett., 2018, 20,
950; (e) S.-M. Wang, C. Zhao, X. Zhang, H.-L. Qin, Org. Biomol.
Chem., 2019, 17, 4087; (f) M. Cortes-Clerget, N. R. Lee, B. H.
Lipshutz, Nat. Protoc., 2019, 14. 1108.
(a) K. Ishihara, S. Ohara and H. Yamamoto, J. Org. Chem.,
1996, 61, 4196; (b) K. Arnold, B. Davies, R. L. Giles, C. Grosjean,
G. E. Smith and A. Whiting, Adv. Synth. Catal., 2006, 348, 813;
(c) R. M. Al-Zoubi, O. Marion and D. G. Hall, Angew. Chem. Int.
Ed., 2008, 47, 2876; (d) K. Arnold, A. S. Batsanov, B. Davies and
A. Whiting, Green Chem., 2008, 10, 124; (e) K. Arnold, B.
Davies, D. Herault and A. Whiting, Angew. Chem., Int. Ed.,
2008, 47, 2673; (f) (a) N. Gernigon, R. M. Al-Zoubi and D. G.
Hall, J. Org. Chem., 2012, 77, 8386; (g) S. Fatemi, N. Gernigon
and D. G. Hall, Green Chem., 2015, 17, 4016; (h) S. Arkhipenko,
M. T. Sabatini, A. S. Batsanov, V. Karaluka, T. D. Sheppard, H.
S. Rzepa and A. Whiting, Chem. Sci., 2018, 9, 1058; (i) K. Wang,
Y. Lu and K. Ishihara, Chem. Commun., 2018, 54, 5410; (j) Y.
Du, T. Barber, S. E. Lim, H. S. Rzepa, I. R. Baxendale and A.
Whiting, Chem. Commun., 2019, 55, 2916.
(a) P. Tang, Org. Syn., 2005, 81, 262; (b) R. Yamashita, A.
Sakakura and K. Ishihara, Org. Lett., 2013, 15, 3654; (c) P.
Starkov, T. D. Sheppard, Org. Biomol. Chem., 2011, 9, 1320;
(d) R. M. Lanigan, P. Starkov and T. D. Sheppard, J. Org. Chem.,
2013, 78, 4512; (e) V. Karaluka, R. M. Lanigan, P. M. Murray,
M. Badland and T. D. Sheppard, Org. Biomol. Chem., 2015, 13,
10888; (f) R. M. Lanigan, V. Karaluka, M. T. Sabatini, P. Starkov,
M. Badland, L. Boulton and T. D. Sheppard, Chem. Commun.,
2016, 52, 8846; (g) M. T. Sabatini, L. T. Boulton and T. D.
Sheppard, Sci. Adv., 2017, 3, e1701028; (h) M. T. Sabatini, V.
Karaluka, R. M. Lanigan, L. T. Boulton, M. Badland and T. D.
Sheppard, Chem. Eur. J., 2018, 24, 7033; (i) D. N. Sawant, D. B.
Bagal, S. Ogawa, K. Selvam, S. Saito, Org. Lett., 2018, 20, 4397.
Experimental Section
General Amidation Procedure
2
A suspension of carboxylic acid (5 mmol, 1 equiv.), amine (5
mmol, 1 equiv.) and B(OCH2CF3)3 (108 µL, 0.5 mmol, 10 mol%)
t
in BuOAc (5 mL, 1 M) with a Dean-Stark trap (side arm filled
with tBuOAc) was heated to reflux. An air condenser was fitted
and the reaction mixture heated for 1–48 h (see Scheme 2). The
reaction was cooled to room temperature and water (0.5 mL),
dimethyl carbonate (5 mL), Amberlite IRA-743 (0.25 g),
Amberlyst A15 (0.5 g) and A-26(OH) (0.5 g) resins were added
and the resulting suspension was stirred for 30 min. Anhydrous
magnesium sulfate (~0.5 g) was added, the mixture filtered, and
the resins/solids washed with ethyl acetate (2 × 5 mL). The
combined filtrates were concentrated in vacuo to yield the pure
amide.
3
Further Experimental Details
Characeterisation data for all amides 1-24, together with 1H and
13C spectra can be found in the supplementary information.
Conflicts of interest
There are no conflicts to declare.
4
Acknowledgements
We would like to thank AstraZeneca and the UCL MAPS faculty
for providing an EPSRC CASE award to support a Ph.D.
studentship for CEC, the Leverhulme Trust for providing a grant
(RPG-2017-221) to support VL, and the Wellcome Trust
(105342/Z/14/Z) for providing a PhD studentship to support
LTM.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins