Scheme 3
2
2.07 (br, NMe2); 0.77 (s, SiMe3). (S)-11: δ 22.0 (dd, JH–P = 92, 95 Hz,
Ta–H); 8.24 (s), 6.67–8.41; 1.74 (br, NMe2); 1.36 (d), 1.00 (d, 2JH–P = 9.2
Hz, PMe3); 0.81 (s), 0.39 (s, SiMe3). 13C: (S)-4: δ 164.9 (Ta–O–C); 46.7
(NMe2); 40.5 (NHMe2); Ϫ0.1 (SiMe3). (R)-5: δ 165.0 (Ta–O–C); 47.1
(NMe2); 39.6 (NHMe2); Ϫ0.8, Ϫ1.4 (SiMe2Ph). (R)-6: δ 165.8 (Ta–O–
C); 46.9 (NMe2); 40.9 (NHMe2); Ϫ2.1 (SiMePh2). (R,S)-7: δ 165.7 (Ta–
O–C); 46.1 (NMe2); 40.0 (NHMe2). (S)-8: δ 164.9 (Ta–O–C); 45.6
(NMe2); Ϫ0.1 (SiMe3). (S)-9 and (S)-10: δ 163.0 (Ta–O–C); 35.8
2
(NMe2); 0.4 (SiMe3). 31P 11: δ 10.9 (d, JPP = 42.0 Hz, PMe3); 3.7 (d,
2JPP = 42 Hz, PMe3).
§ Crystal data: For (S)-4 at 193 K: TaN4O2Si2C34H53, M = 786.95,
space group P212121 (no. 19), a = 11.0515(3), b = 15.2435(4),
c = 21.8989(5) Å, V = 3689.2(3) Å3, Dc = 1.417 g cmϪ3, Z = 4. Of the
8380 unique reflections collected (8.00 р 2θ р 55.00Њ) with Mo-Kα
2
radiation (λ = 0.71073 Å), the 8380 with Fo2 > 2σ(Fo ) were used in
the final least-squares refinement to yield R(Fo) = 0.045 and
2
Rw(Fo ) = 0.088. For (R)-6 at 173 K: TaN4O2Si2C72H79, M = 1269.58,
space group C2221 (no. 20), a = 11.4866(2), b = 20.5325(4),
c = 26.7517(5) Å, V = 6309.4(4) Å3, Dc = 1.336 g cmϪ3, Z = 4. Of
the 7930 unique reflections collected (8.00 р 2θ р 57.42Њ) with
Fig. 2 Molecular structure of (S)-10 showing the atomic numbering
scheme. Selected interatomic distances (Å) and angles (Њ): Ta–O(1)
1.889(6), Ta–O(2) 1.893(7), Ta–Cl(3) 2.420(3), Ta–Cl(4) 2.431(3), Ta–
Cl(5) 2.362(2), Ta–Cl(6) 2.379(2); O(1)–Ta–O(2) 89.8(3), O(1)–Ta–Cl(3)
89.8(2), O(1)–Ta–Cl(4) 173.4(2), O(1)–Ta–Cl(5) 96.0(2), O(1)–Ta–Cl(6)
90.0(2), O(2)–Ta–Cl(3) 176.3(2), O(2)–Ta–Cl(4) 93.2(2), O(2)–Ta–Cl(5)
89.5(2), O(2)–Ta–Cl(6) 93.0(2), Cl(3)–Ta–Cl(4) 87.6(1), Cl(3)–Ta–Cl(5)
86.9(1), Cl(3)–Ta–Cl(6) 90.7(1), Cl(4)–Ta–Cl(5) 89.9(1), Cl(4)–Ta–Cl(6)
84.0(1), Cl(5)–Ta–Cl(6) 173.5(1), Ta–O(1)–C(21) 135.7(6), Ta–O(2)–
C(11) 134.7(6).
2
Mo-Kα radiation (λ = 0.71073 Å), the 7930 with Fo2 > 2σ(Fo )
were used in the final least-squares refinement to yield R(Fo) = 0.040
2
and Rw(Fo ) = 0.073. For (R,S)-7 at 173 K: TaN4O2Si2C70H71, M =
1237.49, space group P21/c (no. 14), a = 11.6987(2), b = 18.2575(4),
c = 28.1025(5) Å, β = 94.759(1)Њ, V = 5981.7(4) Å3, Dc = 1.374 g cmϪ3
,
Z = 4. Of the 14457 unique reflections collected (8.00 р 2θ р 55.70Њ)
2
with Mo-Kα radiation (λ = 0.71073 Å), the 14457 with Fo2 > 2σ(Fo )
were used in the final least-squares refinement to yield R(Fo) = 0.048
2
and Rw(Fo ) = 0.077. For (S)-10 at 173 K: TaCl4NO2Si2C31H39,
M = 836.59, space group C2 (no. 5), a = 27.604(2), b = 12.7559(7),
c = 11.549(1) Å, β = 100.591(3)Њ, V = 3997.4(9) Å3, Dc = 1.390 g cmϪ3
,
ligands has shown that seven-coordinate mono-, di- and tri-
hydrides adopt a pentagonal bipyramidal structure with
trans-axial aryloxide oxygen atoms. The assigned structure for
(S)-11 (axial O and Cl) is, therefore, based upon these previ-
ous results and the spectroscopic data.
Z = 4. Of the 8683 unique reflections collected (8.00 р 2θ р 55.85Њ)
2
with Mo-Kα radiation (λ = 0.71073 Å), the 8683 with Fo2 > 2σ(Fo )
were used in the final least-squares refinement to yield R(Fo) = 0.054
2
and Rw(Fo ) = 0.130. CCDC reference number 186/2089.
In an attempt to avoid the formation of (S)-10, solid (S)-4
was gently heated under vacuum to remove Me2NH leading to
the amine-free (S)-8. Unfortunately treatment of (S)-8 with
SiCl4 generated a complex mixture resulting from incomplete
amide replacement. Apparently for (S)-8 the lack of coordin-
ated Me2NH leads to poor catalysis of the chloride replacement
reaction.
1 I. P. Rothwell, Chem. Commun., 1997, 1331; I. P. Rothwell, Acc.
Chem. Res., 1988, 21, 153; J. S. Vilardo, M. A. Lockwood, L. G.
Hanson, J. R. Clark, B. C. Parkin and I. P. Rothwell, J. Chem. Soc.,
Dalton Trans., 1997, 3353; B. C. Parkin, J. R. Clark, V. M. Visciglio,
P. E. Fanwick and I. P. Rothwell, Organometallics, 1995, 14, 3002.
2 J. S. Vilardo, M. G. Thorn, P. E. Fanwick and I. P. Rothwell, Chem.
Commun., 1998, 2425; M. G. Thorn, J. S. Vilardo, P. E. Fanwick and
I. P. Rothwell, Chem. Commun., 1998, 2427; P. N. Riley, M. G. Thorn,
J. S. Vilardo, M. A. Lockwood, P. E. Fanwick and I. P. Rothwell,
Organometallics, 1999, 18, 3016.
Acknowledgements
We thank the National Science Foundation for financial
support of this research.
3 S. Saito, T. Kano, H. Muto, M. Nakadai and H. Yamamoto, J. Am.
Chem. Soc., 1999, 121, 8943; S. Saito, T. Kano, K. Hatanaka and
H. Yamamoto, J. Org. Chem., 1997, 62, 5651.
4 R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley,
New York, 1994; S. S. Zhu, D. R. Cefalo, D. S. La, J. Y. Jamieson,
W. M. Davis, A. H. Hoveyda and R. R. Schrock, J. Am. Chem. Soc.,
1999, 121, 8251; K. M. Totland, T. J. Boyd, G. G. Lavoie, W. M. Davis
and R. R. Schrock, Macromolecules, 1996, 29, 6114; T. J. Boyle, N. W.
Eilerts, J. A. Heppert and F. Takusagawa, Organometallics, 1992, 11,
1112; N. M. Brunkan, P. S. White and M. R. Gagne, Angew. Chem.,
Int. Ed., 1998, 37, 1579.
5 P. J. Cox, W. Wang and V. Snieckus, Tetrahedron Lett., 1992, 33, 2253
and references therein.
6 P. N. Riley, J. R. Parker, P. E. Fanwick and I. P. Rothwell, Organo-
metallics, 1999, 18, 3579.
Notes and references
‡ Selected spectroscopic data: NMR (C6D6, 30 ЊC) aromatic signals
unless indicated: 1H: (S)-4: δ 8.12 (s), 7.77 (d), 6.82–7.20; 3.19 (s,
NMe2); 1.87 (br, NHMe2); 0.47 (s, SiMe3). 5: δ 8.09 (s), 7.63–7.76 (m),
6.86–7.25; 3.14 (s, NMe2); 1.98 (s, NHMe2); 0.70 (s), 0.69 (s, SiMe2Ph).
(R)-6: δ 7.88 (s), 7.72 (m), 7.40 (d), 6.81–7.30; 2.89 (s, NMe2); 1.81 (s,
NHMe2); 1.00 (s, SiMePh2). (R,S)-7: δ 8.12 (s), 7.85–8.12 (m), 7.44 (d),
7.29 (d), 7.10–7.16 (m), 6.86–6.97; 2.70 (s, NMe2); 1.79 (s, NHMe2). (R)-
8: δ 8.14 (s), 7.78 (d), 7.28 (d), 7.08 (t), 6.89 (t); 3.07 (s, NMe2); 0.48 (s,
SiMe3). (S)-9 and (S)-10: δ 8.23 (s), 7.65 (d), 6.65–7.16; 6.77 (br, NH);
2660
J. Chem. Soc., Dalton Trans., 2000, 2659–2660