3726 J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 17
Robichaud et al.
(9) Linnevers, C.; Smeekens, S. P.; Bromme, D. Human cathepsin
W, a putative cysteine protease predominantly expressed in
CD8+ T-lymphocytes. FEBS Lett. 1997, 405 (3), 253-259.
(10) Hernandez, A. A.; Roush, W. Recent advances in the synthesis,
design and selection of cysteine inhibitors. Curr. Opin. Chem.
Biol. 2002, 6, 459-465.
(11) Lecaille, F.; Kaleta, J .; Bromme, D. Human and parasitic papain-
like cysteine proteases: their role in physiology and pathology
and recent developments in inhibitor design. Chem. Rev. 2002,
102 (12), 4459-4488.
(12) Bryant, C. M.; Palmer, J . T.; Rydzewski, R. M.; Setti, E. L.; Tian,
Z.-Q.; Venkatraman, S. Novel compounds and compositions as
protease inhibitors. World Patent 2000/55126, Chem. Abstr.
2000, 133, 252050.
(13) Gabriel, T.; Pech, M.; Rodriguez Sarmiento, R. M. â-amino acid
nitrile derivatives useful for the treatment of diseases which are
associated with cysteine proteases. World Patent 2001/96285,
Chem. Abstr. 2001, 136, 53544.
lyzed by RP-HPLC using a linear gradient from 25% acetoni-
trile to 60% acetonitrile 0.1% TFA on a C18 column (Zorbax
RX-C18 4.6 × 150 mm). The chromatogram was developed in
6 min at a flow rate of 2 mL/min. Under those conditions, the
retention times for compound (R)-2, the synthetic acid 52, and
the amide 3 were 3.9, 3.2, and 2.7 min, respectively.
Kin etic An a lysis. The measurement of enzyme activity to
determine kinetic parameters was performed in 50 mM MES
pH 5.5 containing 2.5 mM DTT, 2.5 mM EDTA, and 10%
DMSO. Z-Leu-Arg-AMC (2 µM) was used as substrate, and
enzymatic activity was measured at room temperature in 1
mL stirred cells using a Quantamaster spectrofluorometer
(Photon Technology International) with excitation and emis-
sion wavelengths of 355 nm of 460 nm, respectively. Product
formation was measured at different inhibitor concentrations
following initiation of the reaction by the addition of the
enzyme (0.2 nM final concentration). Formation of product (P)
with time for an enzyme inhibited by a time-dependent
inhibitor is described by the following equation34
(14) Missbach, M. Preparation of dipeptide cathepsin K inhibitors.
World Patent 2001/58886, Chem. Abstr. 2001, 135, 180786.
(15) Altmann, E.; Betschart, C.; Gohda, K.; Horiuchi, M.; Lattmann,
R.; Missbach, M.; Sakaki, J .; Takai, M.; Teno, N.; Cowen, S. D.;
Greenspan, P. D.; McQuire, L. W.; Tommasi, R. A.; Van Duzer,
J . H. Dipeptide nitriles. World Patent 9924460, Chem. Abstr.
1999, 130, 352553.
P ) vst - (vs - v0) (1 - e-k )/kobsd
(1)
obs
(16) Greenspan, P. D.; Clark, K. L.; Tommasi, R. A.; Cowen, S. D.;
McQuire, L. W.; Farley, D. L.; van Duzer, J . H.; Goldberg, R. L.;
Zhou, H.; Du, Z.; Fitt, J . J .; Coppa, D. E.; Fang, Z.; Macchia, W.;
Zhu, L.; Capparelli, M. P.; Goldstein, R.; Wigg, A. M.; Doughty,
J . R.; Bohacek, R. S.; Knap, A. K. Identification of dipeptidyl
nitriles as potent and selective inhibitors of cathepsin B through
structure-based drug design. J . Med. Chem. 2001, 44, 4524-
4534.
(17) Ward, Y. D.; Thomas, D. S.; Frye, L. L.; Cywin, C. L.; Morwick,
T.; Emmanuel, M. J .; Zindell, R.; McNeil, D.; Bekkali, Y.;
Giradot, M.; Hrapchak, M.; DeTuri, M.; Crane, K.; White, D.;
Pav, S.; Wang, Y.; Hao, M.-H.; Grygon, C. A.; Labadia, M. E.;
Freeman, D. M.; Davidson, W.; Hopkins, J . L.; Brown, M. L.;
Spero, D. M. Design and synthesis of dipeptide nitriles as
reversible and potent cathepsin S inhibitors. J . Med. Chem.
2002, 45, 5471-5482.
where vs is the rate of the reaction at steady-state, v0 is the
initial velocity of the reaction, and kobsd is the apparent first-
order rate constant characterizing the establishment of the
steady-state velocity. Experimental values were fitted by
nonlinear regression to eq 1, and fitted parameters vs, v0, and
k
obsd were used to estimate pre-steady-state kinetic parameters
kon and koff (eqs 3 and 4) and the dissociation constant Ki (eq
2) using the following relationships.34
Ki ) [I]/((vo/vs) - 1)
kon ) kobsd/([I] + Ki)
koff ) konKi
(2)
(3)
(4)
(18) Suzue, S.; Irikura, T. Studies on hepatic agents. I. Synthesis of
aminoacyl (and hydroxyacyl) aminoacetonitriles. Chem. Pharm.
Bull. 1968, 16, 1417-1432.
(19) Larsen, R. D.; Corley, E. G.; Davis, P.; Reider, P. J .; Grabowski,
E. J . J . R-Hydroxy esters as chiral reagents: asymmetric
synthesis of 2-arylpropionic acids. J . Am. Chem. Soc. 1989, 111,
7650-7651.
(20) Huntress, E. H.; Pfister, K., III. The conversion of 2-phenyl-4-
chloromethylthiazole to 2-phenyl-4-hydroxymethyl-5-chlorothia-
zole. J . Am. Chem. Soc. 1943, 65, 1667-1669.
Su p p or tin g In for m a tion Ava ila ble: 1H NMR spectral
data. This material is available free of charge via the Internet
at http://pubs.acs.org.
Refer en ces
(21) Falgueyret, J . P.; Oballa, R. M.; Okamoto, O.; Wesolowski, G.;
Aubin, Y.; Rydzewski, R. M.; Prasit, P.; Riendeau, D.; Rodan, S.
B.; Percival, M. D. Novel, nonpeptidic cyanamides as potent and
reversible inhibitors of human cathepsins K and L. J . Med.
Chem. 2001, 44 (1), 94-104.
(22) DesJ arlais, R. L.; Yamashita, D. S.; Oh, H.-J .; Uzinskas, I. N.;
Erhard, K. F.; Allen, A. C.; Haltiwanger, R. C.; Zhao, B.; Smith,
W. W.; Abdel-Meguid, S. A.; D′Alessio, K.; J anson, C. A.;
McQueney, M. S.; Tomaszek, T. A.; Levy, M. A.; Veber, D. F.
Use of X-ray cocrystal structures and molecular modeling to
design potent and selective non-peptide inhibitors of cathepsin
K. J . Am. Chem. Soc. 1998, 120, 9114-9115.
(23) Gour-Salin, B. J .; Storer, A. C.; Castelhano, A.; Krantz, A.;
Robinson, V. Inhibition of papain by peptide nitriles: Reactions
of external nucleophiles with the thioimidate ester adduct.
Enzyme Microb, Technol. 1991, 13, 408-411.
(24) Dufour, E.; Storer, A. C.; Menard, R. Engineering nitrile
hydratase activity into a cysteine protease by a single mutation.
Biochemistry 1995, 34, 4 (50), 16382-16388.
(1) Peck, W. A.; Burckhardt, P.; Christiansen, C.; Fleisch, H. A.;
Genant, H. K.; Gennari, C.; Martin, T. J .; Martini, L.; Morita,
R.; Ogata, E.; Rapado, A.; Shulman, L. E.; Stern, P. H.; Young,
R. T. T.; Barrett-Connor, E.; Brandi, M. L.; Chesnut, C. H.;
Delmas, P. D.; Heaney, R. P.; J ohnston, C. C.; Kanis, J . A.;
Lindsay, R.; Meunier, P. J .; Papapoulos, S. E.; Reginster, J . Y.;
Riggs, B. L.; Riis, B. J .; Seeman, E.; Wasnich, R. D. Consensus
development conference: diagnosis prophylaxis and treatment
of osteoporosis. Am. J . Med. 1993, 94, 646-650.
(2) Bromme, D.; Okamoto, K.; Wang, B. B.; Biroc, S. Human
Cathepsin O2, a matrix protein-degrading cysteine protease
expressed in osteoclasts. J . Biol. Chem. 1996, 271, 2126-2132.
(3) Bossard, M. J .; Tomaszek, T. A.; Thompson, S. K.; Amegadzie,
B. Y.; Hanning, C. R.; J ones, C.; Kurdyla, J . T.; McNulty, D. E.;
Drake, F. H.; Gowen, M.; Levy, M. A. Proteolytic activity of
human osteoclast cathepsin K. Expression, purification, activa-
tion, and substrate identification. J . Biol. Chem. 1996, 271,
12517-12524.
(4) Tezuka, K.; Tezuka, Y.; Maejima, A.; Sato, T.; Nemoto, K.;
Kamioka, H.; Hakeda, Y.; Kumegawa, M. Molecular cloning of
(25) Bossard, M. J .; Tomaszek, T. A.; Levy, M. A.; Ijames, C. F.;
Huddleston, M. J .; Briand, J .; Thompson, S.; Halpert, S.; Veber,
D. F.; Carr, S. A.; Meek, T. D.; Tew, D. G. Mechanism of
inhibition of cathepsin K by potent, selective 1,5-diacylcarbohy-
drazides: a new class of mechanism-based inhibitors of thiol
proteases. Biochemistry 1999, 38, 8 (48), 15893-15902.
(26) Christgau, S.; Bitsch-J ensen, O.; Hanover-Bjarnason, N.; Gam-
well-Henriksen, E.; Qvist, P.; Alexandersen, P.; Bang-Henriksen,
D. Serum CrossLaps for monitoring the response in individuals
undergoing antiresorptive therapy. Bone 2000, 26, 505-511.
(27) J oens, D. H. J . Chem. Soc. (C) 1971, 132-137.
(28) Prepared from commercially available 3-morpholinophenol ac-
cording to Kotsuki, H.; Kobayashi, S.; Suenaga, H.; Nishizawa,
H. High-pressure organic chemistry; XI. A new convenient
synthesis of aromatic amines from activated phenols. Synthesis
1990, 12, 1145-1147.
a
possible cysteine proteinase predominantly expressed in
osteoclasts. J . Biol. Chem. 1994, 269, 1106-1109.
(5) Turk, B.; Turk, D.; Turk, V Lysosomal cysteine proteases: more
than scavengers. Biochim. Biophys. Acta 2000, 1477, 98-111.
(6) Drake, F. H.; Dodds, R. A.; J ames, I. E.; Connor, J . R.; Debouck,
C.; Richardson, S.; Lee-Rykaczewski, E.; Coleman, L.; Rieman,
D.; Barthlow, R.; Hastings, G.; Gowen, M. Cathepsin K, but not
Cathepsin B, L, or S, is abundantly expressed in human
osteoclasts. J . Biol. Chem. 1996, 271, 12511-12516.
(7) Kirschke, H.; Bro¨mme, D.; Wiederanders, B. Cathepsin S, a
lysosomal cysteine protease. In Proteolysis and Protein Turnover;
Bond, J . S., Barret, A. J ., Eds.; Portland Press: London and
Chapel Hill, 1993; pp 33-37.
(8) Shi, G. P.; Villadangos, J . A.; Dranoff, G.; Small, C.; Gu, L.;
Haley, K. J .; Riese, R.; Ploegh, H. L.; Chapman, H. A.; Cathepsin
S required for normal MHC class II peptide loading and germinal
center development. Immunity 1999, 10 (2), 197-206.
(29) Prepared from commercially available 2-morpholinophenol ac-
cording to ref 28.