C
G. A. Shevchenko et al.
Letter
Synlett
(4) For selected publications regarding the direct α-hydroxylation
of α-branched ketones, see: (a) Schulz, M.; Kluge, R.; Sivilai, L.;
Kamm, B. Tetrahedron 1990, 46, 2371. (b) Ishikawa, T.; Hino, K.;
Yoneda, T.; Murota, M.; Yamaguchi, K.; Watanabe, T. J. Org.
Chem. 1999, 64, 5691. (c) Chuang, G. J.; Wang, W.; Lee, E.; Ritter,
T. J. Am. Chem. Soc. 2011, 133, 1760. (d) Liang, Y.-F.; Jiao, N.
Angew. Chem. Int. Ed. 2014, 53, 548. (e) Liang, Y.-F.; Wu, K.;
Song, S.; Li, X.; Huang, X.; Jiao, N. Org. Lett. 2015, 17, 876.
(f) Chen, T.; Peng, R.; Hu, W.; Zhang, F.-M. Org. Biomol. Chem.
2016, 14, 9859. (g) Tsang, A. S. K.; Kapat, A.; Schoenebeck, F. J. Am.
Chem. Soc. 2016, 138, 518. (h) Sim, S.-B. D.; Wang, M.; Zhao, Y.
ACS Catal. 2015, 5, 3609.
(5) For selected reviews on organocatalytic aminoxylations, see:
(a) Merino, P.; Tejero, T.; Delso, I.; Matute, R. Synthesis 2016, 48,
653. (b) Vilaivan, T.; Bhanthumnavin, W. Molecules 2010, 15,
917. (c) Janey, J. M. Angew. Chem. Int. Ed. 2005, 44, 4292.
(6) (a) Ramachary, D. B.; Barbas, C. F. Org. Lett. 2005, 7, 1577. (b) Lu,
M.; Zhu, D.; Lu, Y.; Zeng, X.; Tan, B.; Xu, Z.; Zhong, G. J. Am.
Chem. Soc. 2009, 131, 4562.
(7) For publications regarding enol catalysis by our group, see:
(a) Felker, I.; Pupo, G.; Kraft, P.; List, B. Angew. Chem. Int. Ed.
2015, 54, 1960. (b) Shevchenko, G. A.; Pupo, G.; List, B. Synlett
2015, 26, 1413. (c) Pupo, G.; Properzi, R.; List, B. Angew. Chem.
Int. Ed. 2016, 55, 6099. (d) Shevchenko, G. A.; Oppelaar, B.; List,
B. Angew. Chem. Int Ed. 2018, 57, 10756. For independent contri-
butions from other groups, see: (e) Pousse, G.; Le Cavalier, F.;
Humphreys, L.; Rouden, J.; Blanchet, J. Org. Lett. 2010, 12, 3582.
(f) Burns, A. R.; Madec, A. G. E.; Low, D. W.; Roy, I. D.; Lam, H. W.
Chem. Sci. 2015, 6, 3550. (g) Yang, X.; Toste, F. D. J. Am. Chem.
Soc. 2015, 137, 3205. (h) Yang, X.; Toste, F. D. Chem. Sci. 2016, 7,
2653. (i) Spanka, M.; Schneider, C. Org. Lett. 2018, 20, 4769. For
an account on heterodimeric activation in organocatalysis, see:
(j) Monaco, M. R.; Pupo, G.; List, B. Synlett 2016, 27, 1027.
(8) Bestmann, H. J. Angew. Chem., Int. Ed. Engl. 1977, 16, 349.
(9) (a) Rocca, J. R.; Tumlinson, J. H.; Glancey, B. M.; Lofgren, C. S. Tet-
rahedron Lett. 1983, 24, 1889. (b) Rubottom, G. M.; Juve, H. D.
J. Org. Chem. 1983, 48, 422. (c) Yao, S.; Johannsen, M.; Hazell, R.
G.; Jørgensen, K. A. J. Org. Chem. 1998, 63, 118. (d) Eidman, K. F.;
MacDougall, B. S. J. Org. Chem. 2006, 71, 9513.
O
O
O
Me
NH
i)
v)
OH
OH
2a
7
3
79%
4:1 dr
ii)
iv)
51%
iii)
O
OH
OH
OH
OH
6
54%
4
92%
>20:1 dr
5
85%
>20:1 dr
Scheme 3 Chemical derivatization of obtained products. i) MeNH2,
Ti(OiPr)4, PhMe, reflux, 24 h then NaBH4, MeOH, 0 °C, 1 h. ii) K-Selec-
tride®, THF, –78 °C to 0 °C, 2 h then NaOH, H2O2, r.t., overnight.
iii) MeMgCl, THF, –78 °C to r.t., overnight, the product was obtained as
a mixture with unreacted starting material (1H NMR ratio: 5.6:1).
iv) pTsOH, PhMe, reflux, overnight. v) Ph3PCCO, PhMe, reflux, 3 d.
moderate to good yields. The method is complementary to
published systems, easy to execute, and scalable and there-
fore might find application in chemical synthesis.
Funding Information
This work was partially supported by Max Planck Society and the DFG
D
e
ustch
e
F
orsc
h
u
n
gsg
e
m
en
i
sch
a
tf
)(
Acknowledgment
We are grateful for the generous support from the Max Planck Society
and the DFG (Leibnitz award to B. L.), as well as to the service depart-
ments of the MPI für Kohlenforschung.
(10) Exemplary Procedure
In a GC vial 2-phenylcyclohexanone (1a, 43.6 mg, 0.25 mmol,
1.0 equiv) was dissolved in a solution of trichloroacetic acid
(0.75 mmol, 3.0 equiv) in dry PhMe (2.5 mL) and nitrosoben-
zene (0.625 mmol, 2.5 equiv) was added. The vial was closed
with a screw cap, and the resulting mixture was stirred at r.t. for
16 h. The crude reaction mixture was directly purified by flash
column chromatography (SiO2, hexanes/EtOAc = 100:0 then
10:1) to give 2-hydroxy-2-phenylcyclohexan-1-one (2a) as an
orange oil (28.7 mg, 60%). 1H NMR (500 MHz, CDCl3): δ = 7.42–
7.27 (m, 2 H), 7.35–7.29 (m, 3 H), 5.04 (sbr, 1 H), 3.06–2.99 (m, 1
H), 2.59–2.51 (m, 1 H), 2.48–2.39 (m, 1 H), 2.11–2.02 (m, 1 H),
1.91–1.83 (m, 2 H), 1.82–1.68 (m, 2 H). 13C NMR (125 MHz,
CDCl3): δ = 212.9, 139.8, 129.3, 128.6, 126.5, 80.3, 39.0, 38.9,
28.5, 23.2. HRMS (ESI+): m/z calcd for C12H14O2Na [M + Na]+:
213.0886; found: 213.0885.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
References and Notes
(1) (a) Edwards, M. G.; Kenworthy, M. N.; Kitson, R. R. A.; Scott, M.
S.; Taylor, R. J. K. Angew. Chem. Int. Ed. 2008, 47, 1935.
(b) Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Soc. Rev. 2012,
41, 4150. (c) Taj, R. A.; Green, J. R. J. Org. Chem. 2010, 75, 8258.
(2) Smith, A. M. R.; Hii, K. K. Chem. Rev. 2011, 111, 1637.
(3) For commonly applied methods, see: (a) Davis, F. A.; Chen, B. C.
Chem. Rev. 1992, 92, 919. (b) Rubottom, G. M.; Vazquez, M. A.;
Pelegrina, D. R. Tetrahedron Lett. 1974, 15, 4319.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–C