3144
Q. Zheng et al. / Bioorg. Med. Chem. Lett. 13 (2003) 3141–3144
out affecting other functional and protecting groups and
removing the oligomers from the resin,2a phosphor-
amidite 6 could be compatible with introducing struc-
tural diversity at multiple sites in RNA via ‘on-column’
conjugation. This is currently being investigated.
20. Waters, T. R.; Connolly, B. A. Nucleosides Nucleotides
1992, 11, 985.
21. Schulhof, J. C.; Molko, D.; Teoule, R. Nucleic Acids Res.
1987, 15, 397.
22. Jones, R. A. In Oligonucleotide Synthesis, Gait, M. J., Ed.;
Oxford University Press: Oxford, New York, Tokyo, 1984;
p 23.
23. Wu, T.; Ogilvie, K. K.; Pon, R. T. Nucleic Acids Res.
1989, 17, 3501.
Acknowledgements
24. Damha, M. J.; Ogilvie, K. K. In Protocols for Oligo-
nucleotides and Analogues, Agrawal, S., Ed.; Human: Totowa,
NJ, 1993; p 81.
We wish to thank The Royal Society for their financial
support. We would also like to thank Dr. Y.-Z. Xu of
Open University for useful advice and use of the DNA/
RNA synthesiser in his laboratory, and Dr. Peter Ash-
ton of Birmingham University for obtaining high-reso-
lution mass spectra.
25. 1H NMR and HRMS data: 2: 1H NMR spectrum
(DMSO-d6): 3.47–3.64 (m, 2H, 50-H, 500-H), 3.89 (m, 1H, 40-
H), 4.10 (m, 1H, 30-H), 4.47 (m, 1H, 20-H), 5.07 (t, 1H, 50-OH),
5.20 (d, 1H, 30-OH), 5.50 (t, 1H, 20-OH), 5.80 (d, 1H, 10-H),
6.77 (s, 2H, 2-NH2, ex), 7.96 (d, 1H, 6-H of 2,4-dinitrophenyl),
8.32 (s, 1H, 8-H), 8.40 (d, 1H, 5-H of 2,4-dinitrophenyl), 8.88
(s, 1H, 3-H of 2,4-dinitrophenyl). HRMS: calcd for
C16H15N7O8S [M+Na]+ 488.0601, found 488.0592. 3: 1H
NMR spectrum (DMSO-d6): 3.34–3.58 (m, 2H, 50-H, 500-H),
3.94 (m, 1H, 40-H), 4.18 (m, 1H, 30-H), 4.59 (m, 1H, 20-H), 4.79
(s, 2H, –CH2– of PhOCH2CO), 5.94 (d, 1H, 10-H), 6.80–6.92
(m, 3H, Ar), 7.25 (m, 2H, Ar), 8.21(d, 1H, 6-H of 2,4-dini-
trophenyl), 8.37 (d, 1H, 5-H of 2,4-dinitrophenyl), 8.72 (s, 1H,
8-H), 8.87 (s, 1H, 3-H of 2,4-dinitrophenyl), 10.86 (s, 1H, 2-
NH, ex). HRMS: calcd for C24H21N7O10S [M+Na]+
References and Notes
1. Chambert, S.; Decout, J.-L. Org. Prep. Proced. Int. 2002,
34, 27.
2. (a) Zheng, Q.; Wang, Y.; Lattmann, E. Tetrahedron 2003,
59, 1925. (b) Wang, Y.; Zheng, Q. J. Pharm. Pharmacol. 2000,
52 (S), 98. (c) Xu, Y.-Z. Bioorg. Med. Chem. Lett. 1998, 8,
1839. (d) Coleman, R. S.; Arthur, J. C.; McCary, J. L. Tetra-
hedron 1997, 53, 11191. (e) Meyer, K. L.; Hanna, M. M. Bio-
conjugate Chem. 1996, 7, 401.
1
622.0968, found 622.0975. 4: H NMR spectrum (DMSO-d6):
3.13–3.16 (m, 2H, 50-H, 500-H), 3.35 (m, 1H, 40-H), 3.69 (s, 3H,
CH3O–), 4.05 (m, 1H, 30-H), 4.29 (m, 1H, 20-H), 4.73 (s, 2H,
–CH2– of PhOCH2CO), 6.01(d, 1H, 1 0-H), 6.75–6.96 (m, 4H,
Ar), 7.15–7.29 (m, 15H, Ar), 8.15 (d, 1H, 6-H of 2,4-dini-
trophenyl), 8.46 (d, 1H, 5-H of 2,4-dinitrophenyl), 8.61 (s, 1H,
8-H), 8.89 (s, 1H, 3-H of 2,4-dinitrophenyl), 10.84 (s, 1H, 2-
NH, ex). HRMS: calcd for C44H37N7O11S [M+Na]+
894.2169, found 894.2150. 5: 1H NMR spectrum (CDCl3):
ꢁ0.11 (s, 3H, CH3–Si), 0.02 (s, 3H, CH3–Si), 0.84 (s, 9H, t-Bu-
Si), 3.45 (m, 2H, 50-H, 500-H), 3.76 (m, 3H, CH3O–), 4.25 (m,
1H, 40-H), 4.43 (m, 1H, 30-H), 4.53 (s, 2H, –CH2– of
PhOCH2CO), 4.90 (m, 1H, 20-H), 6.04 (d, 1H, 10-H), 6.77–6.87
(m, 4H, Ar), 7.18–7.38 (m, 15H, Ar), 8.21 (s, 1H, 2-NH, ex),
8.37 (m, 2H, 5-H and 6-H of 2,4-dinitrophenyl), 8.75 (s, 1H, 8-
H), 8.96 (s, 1H, 3-H of 2,4-dinitrophenyl). HRMS: calcd for
C50H51N7O11SSi [M+Na]+ 1008.3034, found 1008.3063. 6:
31P NMR spectrum (CDCl3): 153.79, 152.82. HRMS: calcd for
C59H69N7O12SSiP [M+Na]+ 1186.1707, found 1186.1723.
26. In a typical nucleoside composition analysis, 1O.D. of
oligoribonucleotide was dissolved in 1.0 mL of a solution
containing 0.2 mM ZnCl2, 16 mM MgCl2, 250 mM Tris–HCl
pH 6.0, 0.2 unit of snake venom phosphodiesterase (Sigma),
and 4 units of calf-intestinal alkaline phosphatase (Sigma),
and the mixture was incubated at 37 ꢀC for 8 h. The digested
sample was then analysed with reverse-phase HPLC (C18 col-
umn), which was eluted with buffer A (0.1M TEAA/aceto-
nitrile, 98:2) and buffer B (0.1M TEAA/acetonitrile, 20:80). A
linear gradient was formed from 0 to 20% of the buffer B over
25 min. Peaks on the HPLC trace were identified by retention
time comparison with the authentic samples. Retention times
3. Hanna, M. M. Methods Enzymol. 1996, 274, 403.
4. Wang, L. X.; Ruffner, D. E. Nucleic Acids Res. 1997, 25,
4355.
5. Yu, Y.; Stertz, J. A. Proc. Natl. Acad. Sci. U.S.A. 1997, 74,
6030.
6. Baravov, P. V.; Gurvich, O. L.; Bogdanov, A. A.; Brima-
combe, R.; Dontsova, O. A. RNA 1998, 4, 658.
7. Laugaa, P.; Woisard, A.; Fourrey, J.-L.; Favre, A. Life Sci.
1995, 318, 307.
8. Huan, B.; Van, Atta R.; Cheng, P.; Wood, M. L.;
Zychlinsky, E.; Albagli, D. Biotechniques 2000, 28, 254.
9. McGregor, A.; Vaman Rao, M.; Duckworth, G.; Stockley,
P. G.; Connolly, B. A. Nucleic Acids Res. 1996, 24, 3173.
10. Adams, C. J.; Murray, J. B.; Arnold, J. R. P.; Stockley,
P. G. Tetrahedron Lett. 1994, 35, 765.
11. Adams, C. J.; Murray, J. B.; Farrow, M. A.; Arnold,
J. R. P.; Stockley, P. G. Tetrahedron Lett. 1995, 36, 5421.
12. Xu, Y.-Z.; Zheng, Q.; Swann, P. F. J. Org. Chem. 1992,
57, 3839.
13. Xu, Y.-Z.; Zheng, Q.; Swann, P. F. Tetrahedron Lett.
1992, 33, 5837.
14. Xu, Y.-Z.; Zheng, Q.; Swann, P. F. Tetrahedron 1992, 48,
1729.
15. Zheng, Q.; Xu, Y.-Z.; Swann, P. F. Nucleosides Nucleo-
tides 1997, 16, 1799.
16. Preliminary results were presented in XV International
Round Table Nucleosides, Nucleotides and Nucleic Acids, 10–
14 September 2002, Leuven, Belgium.
17. Kadokura, M.; Wada, T.; Seio, K.; Sekine, M. J. Org.
Chem. 2000, 65, 5104.
18. Clivio, P.; Fourrey, J.-L.; Faver, A. J. Chem. Soc., Perkin
Trans. 1 1993, 2585.
19. Clivio, P.; Fourrey, J.-L.; Gasche, J. Tetrhadron Lett.
1992, 33, 65.
were: C: 4.50 min, U: 5.63 min, I: 8.26 min, G: 8.85 min, GSH
10.50 min, and A: 13.12 min.
:
27. ESI-MS: calcd for (50-GCGSH AU-30) [MꢁH]ꢁ 1583.23,
found 1583.02; calcd for (50-UAC CAGSH UGA GCU-30)
[MꢁH]ꢁ 3808.51, found 3808.16.