8304
J. I. 6an der Vlugt et al. / Tetrahedron Letters 44 (2003) 8301–8305
Scheme 3.
Table 1. Rhodium catalyzed hydroformylation of 1-octene using monophosphite ligands 1–5a
Entry
Ligand
Time (min)
S/Rh ratio
Conversion [%]b
Selectivity aldehydes [%]b
l/b ratiob
TOFc
1
2
3
4
5
6
1
1
2
3
4
5
15
15
20
20
60
20
4000
8000d
4000
4000e
4000
4000
31.5
14.5
22.9
17.8
<1%f
2.2
94.5
95.5
94.4
94.8
–
2.2
2.1
2.1
2.1
–
5000
4500
2500
2200
–
31.9
2.2
260
a Reaction conditions: 1-octene (31.0 mmol), decane (12.5 mmol), toluene (12.7 mL); p=20 bar CO/H2 (1:1); T=80°C; [Rh(acac)(CO)2]=0.39
mM; ligand:Rh=10:1.
b Determined by GC analysis.
c Turnover frequency, defined as (mol octene converted) (mol rhodium)−1 hour−1
.
d [Rh(acac)(CO)2]=0.20 mM.
e Ligand:Rh=5:1.
f Below detection limit.
References
The great potential of phosphites in hydroformylation
catalysis is based on the strong p-acceptor character of
1. (a) Frohning, C. D.; Kohlpainter, C. W.; Bohnen, H. W.
In Applied Homogeneous Catalysis with Organometallic
Compounds; Cornils, B.; Herrmann, W. A., Eds.; VCH:
Weinheim, 2002; Vol. 1, p. 31; (b) Kamer, P. C. J.; Reek,
J. N. H.; van Leeuwen, P. W. N. M. In Rhodium Catalyzed
Hydroformylation; van Leeuwen, P. W. N. M.; Claver, C.,
Eds.; Kluwer: Dordrecht, 2000; p. 35.
the phosphorus atoms induced by the surrounding oxy-
gen atoms. From our results we conclude that Rh-cata-
lysts with monophosphite ligands incorporated in a
silsesquioxane framework show similar catalytic activi-
ties to other monophosphites, although the regioselec-
tivities under non-optimized conditions are somewhat
lower.3,4
2. (a) Billig, E.; Abatjoglou, A. G.; Bryant, D. R. (to Union
Carbide) US Pat. 4,668,651 1987 [Chem. Abstr. 1987, 107,
7392]; (b) Burke, P. M.; Garner, J. M.; Tam, W.; Kreutzer,
K. A.; Teunissen, A. J. J. M. (to DSM/Du Pont) WO 97
33854, 1997 [Chem. Abstr. 1997, 127, 294939]; (c) Sato, K.;
Karawagi, Y.; Takai, M.; Ookoshi, T. (to Mitsubishi) US
Patent 5,235,113, 1993 [Chem. Abstr. 1993, 118, 191183].
3. (a) Pruett, R. L.; Smith, J. A. J. Org. Chem. 1969, 34, 327;
(b) Omatsu, T. (to Kururay) Eur. Pat. 303,060, 1989
[Chem. Abstr. 1989, 111, 38870]; (c) Billig, E.; Abatjoglou,
A. G.; Bryant, D. R. (to Union Carbide) US Patent
4,769,498, 1987 [Chem. Abstr. 1987, 14, 3081].
4. van Leeuwen, P. W. N. M.; Roobeek, C. F. (to Shell), Brit.
Pat. 2068377, 1980 [Chem. Abstr. 1984, 101, 191142].
5. (a) Feher, F. J.; Newman, D. A.; Walzer, J. F. J. Am. Chem.
Soc. 1989, 111, 1741; (b) Edelmann, F. T. Angew. Chem.,
Int. Ed. 1992, 31, 586; (c) Feher, F. J.; Budzichowski, T.
A. Polyhedron 1995, 14, 3239; (d) Dijkstra, T. W.;
Duchateau, R.; van Santen, R. A.; Meetsma, A.; Yap, G.
P. A. J. Am. Chem. Soc. 2002, 124, 9856.
In summary, we have described the synthesis of three
new monophosphites 1–3 based on an incompletely
condensed silsesquioxane framework. Rhodium cata-
lysts containing these ligands show high activities in the
hydroformylation of 1-octene, with turnover frequen-
cies up to 5000 h−1. The selectivity under non-optimized
conditions is moderate at l/b ratios of around 2. We are
currently expanding the scope of P-containing ligands
based on silsesquioxane backbones, including bulky
electron-withdrawing mono- and diphosphites and
diphosphinites15 as well as using dendritic POSS skele-
tons for continuous catalysis.
Acknowledgements
We are indebted to Drs. Tessa Dijkstra for measuring
the 29Si NMR spectra. We thank the National Research
School Combination for Catalysis (NRSCC) for the
financial support. Jens Ackerstaff thanks the Erasmus
Program of the European Union for a travel grant. The
OMG Group is acknowledged for a generous loan of
Rh(acac)(CO)2.
6. (a) Maxim, N.; Magusin, P. C. M. M.; Kooyman, P. J.;
van Wolput, J. H. M. C.; van Santen, R. A.; Abbenhuis,
H. C. L. Chem. Mat. 2001, 13, 2958; (b) Choi, J.; Harcup,
J.; Yee, A. F.; Zhu, Q.; Laine, R. M. J. Am. Chem. Soc.
2001, 123, 11420; (c) Feher, F. J.; Terroba, R.; Jin, R. Z.;
Wyndham, K. D.; Lucke, S.; Brutchey, R.; Nguyen, F.
PMSE 2000, 82, 301.