Synthesis of N-Vinyloxazolidinones and Morpholines
1H NMR (400 MHz, CDCl3): δ = 6.46 (dd, J = 16.5, 10.0 Hz, 1 H,
CH=CH2), 4.94 (dd, J = 16.5, 1.0 Hz, 1 H, CH=CHH), 4.54 (dd,
J = 10.0, 1.0 Hz, 1 H, CH=CHH), 4.03 (s, 2 H, CH2), 1.49 (s, 6 H,
2 CH3) ppm. 13C NMR (100.5 MHz, CDCl3): δ = 155.1 (CO),
127.6 (CH), 96.5 (CH2), 75.2 (CH2), 58.5 (C), 24.7 (CH3) ppm. The
spectroscopic data are consistent with those reported.[24]
[3]
For the generation of morpholines via vinylsulfonium salts, see:
a) M. Yar, E. M. McGarrigle, V. K. Aggarwal, Angew. Chem.
2008, 120, 3844; Angew. Chem. Int. Ed. 2008, 47, 3784–3786; b)
M. Hansch, O. Illa, E. M. McGarrigle, V. K. Aggarwal, Chem.
Asian J. 2008, 3, 1657–1663; c) J. Bornholdt, J. Felding, J. L.
Kristensen, J. Org. Chem. 2010, 75, 7454–7457; d) J. An, N. J.
Chang, L. D. Song, Y. Q. Jin, Y. Ma, J. R. Chen, W. J. Xiao,
Chem. Commun. 2011, 47, 1869–1871.
3-Vinyloxazolidin-2-one (5k):[25] Following general procedure B
using benzyl 2-hydroxyethylcarbamate (3k; 700 mg, 3.57 mmol),
KOtBu (801 mg, 7.14 mmol) and diphenylvinylsulfonium salt 1
(1546 mg, 4.27 mmol). After column chromatography (Et2O/hex-
anes, 75:25) the title compound (258 mg, 64%) was isolated as a
yellow oil. Rf = 0.45 (Et2O/hexanes, 1:1). 1H NMR (400 MHz,
CDCl3): δ = 6.73 (dd, J = 15.8, 8.9 Hz, 1 H, CH=CH2), 4.28–
4.40 (m, 3 H, CH=CHH, CH2), 4.21 (dd, J = 15.8, 1.2 Hz, 1 H,
CH=CHH), 3.58–3.66 (m, 2 H, CH2) ppm. 13C NMR (100.5 MHz,
CDCl3): δ = 155.1 (CO), 129.3 (NCH), 93.2 (CH=CH2), 62.0
(CH2), 41.6 (CH2) ppm. The spectroscopic data are consistent with
those reported.[25]
[4]
[5]
For the generation of morpholines via vinyl selenones, see: L.
Bagnoli, C. Scarponi, M. G. Rossi, L. Testaferri, M. Tiecco,
Chem. Eur. J. 2011, 17, 993–999.
For related work on the application of vinylsulfonium salts in
synthesis, see: a) K. H. Kim, L. S. Jimenez, Tetrahedron: Asym-
metry 2001, 12, 999–1005; b) H. Yamanaka, J. Matsuo, A. Ka-
wana, T. Mukaiyama, Chem. Lett. 2003, 32, 626–627; c) J. Mat-
suo, H. Yamanaka, A. Kawana, T. Mukaiyama, Chem. Lett.
2003, 32, 392–393; d) H. Yamanaka, J. Matsuo, A. Kawana, T.
Mukaiyama, ARKIVOC 2004, 42–65; e) M. G. Unthank, N.
Hussain, V. K. Aggarwal, Angew. Chem. 2006, 118, 7224; An-
gew. Chem. Int. Ed. 2006, 45, 7066–7069; f) C. G. Kokotos,
E. M. McGarrigle, V. K. Aggarwal, Synlett 2008, 2191–2195;
g) M. G. Unthank, B. Tavassoli, V. K. Aggarwal, Org. Lett.
2008, 10, 1501–1504; h) C. S. Xie, D. Y. Han, J. H. Liu, T. Xie,
Synlett 2009, 3155–3158; i) S. Catalan-Munoz, C. A. Muller,
S. V. Ley, Eur. J. Org. Chem. 2010, 183–190; j) R. Maeda, K.
Ooyama, R. Anno, M. Shiosaki, T. Azema, T. Hanamoto, Org.
Lett. 2010, 12, 2548–2550; k) C. S. Xie, D. Y. Han, Y. Hu, J. H.
Liu, T. A. Xie, Tetrahedron Lett. 2010, 51, 5238–5241; l) M.
Yar, M. G. Unthank, E. M. McGarrigle, V. K. Aggarwal,
Chem. Asian J. 2011, 6, 372–375.
For the direct use of bromoethylsulfonium triflate in annu-
lation reactions, see: a) M. Yar, E. M. McGarrigle, V. K. Ag-
garwal, Org. Lett. 2009, 11, 257–260; b) S. P. Fritz, A. Mumtaz,
M. Yar, E. M. McGarrigle, V. K. Aggarwal, Eur. J. Org. Chem.
2011, 3156–3164; c) E. M. McGarrigle, S. P. Fritz, L. Favereau,
M. Yar, V. K. Aggarwal, Org. Lett. 2011, 13, 3060–3063.
For applications of N-vinyloxazolidinones, see: a) C. Gaulon,
R. Dhal, T. Chapin, V. Maisonneuve, G. Dujardin, J. Org.
Chem. 2004, 69, 4192–4202; b) F. Gohier, K. Bouhadjera, D.
Faye, C. Gaulon, V. Maisonneuve, G. Dujardin, R. Dhal, Org.
Lett. 2007, 9, 211–214; c) A. Pałasz, Org. Biomol. Chem. 2005,
3, 3207–3212; d) J. Montgomery, G. M. Wieber, L. S. Hegedus,
J. Am. Chem. Soc. 1990, 112, 6255–6263; e) J. J. Masters, L. S.
Hegedus, J. Tamariz, J. Org. Chem. 1991, 56, 5666–5671; f) M.
Miller, L. S. Hegedus, J. Org. Chem. 1993, 58, 6779–6785; g)
A. Kutner, J. Org. Chem. 1961, 26, 3495–3498; h) G. M. Mi-
yake, D. A. DiRocco, Q. Liu, K. M. Oberg, E. Bayram, R. G.
Finke, T. Rovis, E. Y.-X. Chen, Macromolecules 2010, 43,
7504–7514.
General Procedure C
Preparation of Sample Reactions for the Tandem MS Investigation:
A stirred solution of the N-protected β-amino alcohol (1.0 equiv.)
in CH2Cl2 (0.07 m) was treated with base (2.0 equiv.) at 0 °C under
nitrogen. After 10 min a solution of diphenylvinylsulfonium salt 1
(1.2 equiv.) in CH2Cl2 (0.1 m) was added dropwise over 2 min, the
reaction was stirred at 0 °C for 3 h and then warmed to room tem-
perature. Aliquots of the reaction solution were diluted with
CH2Cl2 (HPLC grade) and subjected to tandem MS analysis.
[6]
[7]
Major peaks in the mass spectra were assigned to the proposed
structures based on fragmentation in the MS/MS experiments.
Supporting Information (see footnote on the first page of this arti-
cle): General methods, experimental procedures, and spectroscopic
and analytical data for all compounds.
Acknowledgments
S.P.F. thanks the Engineering and Physical Sciences Research
Council (EPSRC) for a scholarship. M.Y. thanks the Higher Edu-
cation Commission of Pakistan and the University of Bristol for
support of a studentship. V.K.A. thanks the Royal Society for a
Wolfson Research Merit Award, the EPSRC for a Senior Research
Fellowship, and Merck for research support.
[8]
For applications of MS/MS in mechanistic investigations, see:
a) W. Schrader, P. P. Handayani, J. Zhou, B. List, Angew. Chem.
2009, 121, 1491; Angew. Chem. Int. Ed. 2009, 48, 1463–1466;
b) L. S. Santos, Eur. J. Org. Chem. 2008, 235–253; c) W.
Schrader, P. P. Handayani, C. Burstein, F. Glorius, Chem. Com-
mun. 2007, 716–718; d) C. D. F. Milagre, H. M. S. Milagre,
L. S. Santos, M. L. A. Lopes, P. J. S. Moran, M. N. Eberlin,
J. A. R. Rodrigues, J. Mass Spectrom. 2007, 42, 1287–1293; e)
C. A. Marquez, F. Fabbretti, J. O. Metzger, Angew. Chem. 2007,
119, 7040; Angew. Chem. Int. Ed. 2007, 46, 6915–6917; f)
C. A. M. Abella, M. Benassi, L. S. Santos, M. N. Eberlin, F.
Coelho, J. Org. Chem. 2007, 72, 4048–4054; g) C. Marquez,
J. O. Metzger, Chem. Commun. 2006, 1539–1541; h) L. S. San-
tos, L. Knaack, J. O. Metzger, Int. J. Mass Spectrom. 2005, 246,
84–104; i) L. S. Santos, C. H. Pavam, W. P. Almeida, F. Coelho,
M. N. Eberlin, Angew. Chem. 2004, 116, 4430; Angew. Chem.
Int. Ed. 2004, 43, 4330–4333; j) A. A. Sabino, A. H. L. Mach-
ado, C. R. D. Correia, M. N. Eberlin, Angew. Chem. 2004, 116,
4489; Angew. Chem. Int. Ed. 2004, 43, 4389; k) S. Meyer, R.
Koch, J. O. Metzger, Angew. Chem. 2003, 115, 4848; Angew.
Chem. Int. Ed. 2003, 42, 4700–4703; l) J. Griep-Raming, S.
[1] For a review, see: a) R. Wijtmans, M. K. S. Vink, H. E. Schoe-
maker, F. L. van Delft, R. H. Blaauw, F. P. J. T. Rutjes, Synthe-
sis 2004, 641–662.
[2] For recent examples, see: a) B. A. Lanman, A. G. Myers, Org.
Lett. 2004, 6, 1045–1047; b) M. C. Wilkinson, Tetrahedron
Lett. 2005, 46, 4773–4775; c) R. Pedrosa, C. Andrés, P. Mendi-
guchía, J. Nieto, J. Org. Chem. 2006, 71, 8854–8863; d) M.
DЈhooghe, T. Vanlangendonck, K. W. Törnroos, N. De Kimpe,
J. Org. Chem. 2006, 71, 4678–4681; e) M. Breuning, M. Win-
nacker, M. Steiner, Eur. J. Org. Chem. 2007, 2100–2106; f) R.
Madsen, L. U. Nordstrom, Chem. Commun. 2007, 5034–5036;
g) M. Penso, V. Lupi, D. Albanese, F. Foschi, D. Landini, A.
Tagliabue, Synlett 2008, 2451–2454; h) J. P. Wolfe, M. L. Le-
athen, B. R. Rosen, J. Org. Chem. 2009, 74, 5107–5110; i)
M. K. Ghorai, D. Shukla, K. Das, J. Org. Chem. 2009, 74,
7013–7022; j) W. J. Xiao, L. Wang, Q. S. Liu, D. S. Wang, X.
Li, X. W. Han, Y. G. Zhou, Org. Lett. 2009, 11, 1119–1122; k)
D. L. Aubele, J. J. Jagodzinski, D. A. Quincy, M. S. Dappen,
L. H. Latimer, R. K. Hom, R. A. Galemmo, A. W. Konradi,
H. L. Sham, Tetrahedron Lett. 2011, 52, 2471–2472.
Eur. J. Org. Chem. 2012, 160–166
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
165