3052 w, 3023 w, 1598 m, 1529 w, 1485 w, 1442 m, 1346 m sh,
1308 m sh, 1217 w, 1177 w, 1155 w, 1071 m, 1008 vs, 888 vw, 833
vw, 793 m, 753 s, 714 m, 700 s, 664 w, 527 w. 1H NMR (CDCl3):
δ 8.42 (s, 8H, pyrrole-H of TPP), 8.05 (m, 8H, o-H of TPP),
7.65 (m, 12H, m,p-H of TPP), 6.40 (tt, J = 7.2/0.8, 1H, p-H of
PhNO), 6.09 (tt, J = 7.6/1.6, 1H, p-H of pyridine), 5.96 (m, 2H,
m-H of PhNO), 5.24 (m, 2H, m-H of pyridine), 2.55 (m, 2H,
o-H of PhNO), 1.76 (m, 2H, o-H of pyridine). Low-resolution
mass spectrum (FAB): m/z 900 [(TPP)Ru(PhNO)(py)]ϩ (7%),
851 [(TPP)Ru(NO)(PhNO)]ϩ (24%), 821 [(TPP)Ru(PhNO)]ϩ
(40%), 793 [(TPP)Ru(py)]ϩ (9%), 714 [(TPP)Ru]ϩ (100%). UV-
vis spectrum (λ/nm (ε/mMϪ1 cmϪ1), 3.30 × 10Ϫ6 M in CH2Cl2):
308 (34), 411 (230), 533 (18).
(TTP)Ru(o-tolNO)(1-MeIm)
58% Isolated yield. IR (KBr, cmϪ1): νNO 1311 s; also 3127 vw,
3021 w, 2954 vw, 2921 w, 2867 vw, 1529 m, 1514 w, 1479 w, 1442
w, 1347 m, 1284 w sh, 1237 w, 1211 w, 1181 w, 1108 m, 1090 w,
1072 m, 1008 vs, 947 vw, 906 w, 797 s, 755 w, 718 m, 672 vw, 658
1
w, 616 vw, 524 m. H NMR (CDCl3): δ 8.38 (s, 8H, pyrrole-H
of TTP), 7.90 (dd (overlapping with oЈ-H of TTP), 4H, o-H of
TTP), 7.87 (dd (overlapping with o-H of TTP), 4H, oЈ-H of
TTP), 7.45 (br d, J = 7.6, 4H, m-H of TTP), 7.41 (br d, J = 7.6,
4H, mЈ-H of TTP), 6.23 (br ddd (apparent br td), J = 7.6/7.6/
1.2, 1H, p-H of o-tolNO), 5.78 (br d, J = 7.6, 1H, m-H of
o-tolNO), 5.71 (br dd (apparent br t), J = 7.6/7.6, 1H, mЈ-H of
o-tolNO), 4.68 (dd (apparent t), J = 1.6/1.6, 1H of 1-MeIm),
2.64 (s, 12H, CH3 of TTP), 2.14 (s, 3H, CH3 of 1-MeIm), 2.05
(br dd, J = 7.6/1.2, 1H, o-H of o-tolNO), 1.47 (br, 1H of
1-MeIm), 1.11 (dd (apparent t), J = 1.6/1.6, 1H of 1-MeIm),
Ϫ1.01 (s, 3H, CH3 of o-tolNO). Low-resolution mass spectrum
(FAB): m/z 973 [(TTP)Ru(o-tolNO)(1-MeIm)]ϩ (10%), 891
[(TTP)Ru(o-tolNO)]ϩ (26%), 852 [(TTP)Ru(1-MeIm)]ϩ (45%),
770 [(TTP)Ru]ϩ (100%).
(TTP)Ru(PhNO)(py)
67% Isolated yield. IR (KBr, cmϪ1): νNO 1332 s; also 3077 vw,
3023 vw, 2955 vw, 2920 vw, 1602 w, 1528 m, 1510 w, 1487 w,
1445 m, 1400 vw, 1347 m, 1306 m, 1262 w, 1212 w, 1181 m, 1153
w, 1108 m, 1069 m, 1037 vw, 1007 vs, 886 w, 847 vw, 800 s, 794 s,
1
764 w, 754 w, 715 m, 691 m, 665 vw, 644 vw, 523 m. H NMR
(CDCl3): δ 8.42 (s, 8H, pyrrole-H of TTP), 7.94 (dd, J = 7.6/1.6,
4H, o-H of TTP), 7.90 (dd, J = 7.6/1.6, 4H, oЈ-H of TTP), 7.48
(br d, J = 7.6, 4H, m-H of TTP), 7.43 (br d, J = 7.6, 4H, mЈ-H
of TTP), 6.36 (tt, J = 7.2/0.8, 1H, p-H of PhNO), 6.07 (tt,
J = 7.6/1.6, 1H, p-H of pyridine), 5.93 (m, 2H, m-H of PhNO),
5.22 (m, 2H, m-H of pyridine), 2.65 (s, 12H, CH3 of TTP), 2.52
(m, 2H, o-H of PhNO), 1.74 (m, 2H, o-H of pyridine). Low-
resolution mass spectrum (FAB): m/z 907 [(TTP)Ru(NO)-
(PhNO)]ϩ (46%), 770 [(TTP)Ru]ϩ (100%). UV-vis spectrum
(λ/nm, CH2Cl2): 310 (10), 413 (100), 533 (5%).
(TTP)Ru(N(O)C6H4OMe-p)(1-MeIm)
70% Isolated yield. IR (KBr, cmϪ1): νNO 1323 s, 1306 s; also 3127
vw, 3021 w, 2921 w, 1599 w, 1563 w, 1528 m, 1510 w, 1497 m,
1460 w, 1441 w, 1348 m, 1246 s, 1212 w, 1182 m, 1156 w, 1108 m,
1093 w, 1072 m, 1034 w, 1008 vs, 947 vw, 903 w, 831 w, 797 s, 717
1
m, 671 w, 616 w, 524 w. H NMR (CDCl3): δ 8.37 (s, 8H, pyr-
role-H of TTP), 7.96 (dd, J = 7.6/2.0, 4H, o-H of TTP), 7.90
(dd, J = 7.6/2.0, 4H, oЈ-H of TTP), 7.47 (br d, J = 7.6, 4H, m-H
of TTP), 7.42 (br d, J = 7.6, 4H, mЈ-H of TTP), 5.44 (m, 2H,
m-H of N(O)C6H4OMe-p), 4.70 (dd (apparent t), J = 1.2/1.2,
1H of 1-MeIm), 3.40 (s, 3H, N(O)C6H4OMe-p), 2.67 (d (over-
lapping with CH3 of TTP), 2H, o-H of N(O)C6H4OMe-p), 2.64
(s, 12H, CH3 of TTP), 2.15 (s, 3H, CH3 of 1-MeIm), 1.56 (br,
1H of 1-MeIm), 1.20 (dd (apparent t), J = 1.2/1.2, 1H of
1-MeIm). Low-resolution mass spectrum (FAB): m/z 989
[(TTP)Ru(N(O)C6H4OMe-p)(1-MeIm)]ϩ (11%), 907 [(TTP)-
Ru(N(O)C6H4OMe-p)]ϩ (19%), 852 [(TTP)Ru(1-MeIm)]ϩ
(35%), 770 [(TTP)Ru ]ϩ (100%).
Preparation of (por)Ru(ArNO)(1-MeIm) compounds
(por ؍
TPP, TTP; ArNO ؍
o-tolNO, N(O)C6H4OMe-p,
N(O)C6H2Me2OMe-p).
These compounds were prepared from the reaction of
the corresponding (por)Ru(ArNO)2 with excess 1-MeIm. The
following reaction is representative:
To a CH2Cl2 solution (20 mL) of (TPP)Ru(o-tolNO)2ؒ
0.3CH2Cl2 (0.050 g, 0.051 mmol) was added ∼2 equiv. of
1-MeIm. This mixture was stirred at room temperature for
30 min, during which time it turned from brown to red–purple.
The solvent was removed in vacuo. A 1H NMR spectrum
of the residue in CDCl3 showed the quantitative formation of
(TPP)Ru(o-tolNO)(1-MeIm), together with the presence of
some unreacted 1-MeIm. Spectroscopically pure (TPP)-
Ru(o-tolNO)(1-MeIm)ؒ0.7CH2Cl2 was obtained in 72% yield
by recrystallization of the residue from a CH2Cl2–hexane
solution (1 : 3) at Ϫ20 ЊC. Anal. Calc. for C55H41N7O1Ru1ؒ
0.7CH2Cl2: C, 68.51; H, 4.38; N, 10.04; Cl, 5.08. Found: C,
68.75; H, 4.71; N, 9.76; Cl, 5.00%. IR (KBr, cmϪ1): νNO 1321 s,
1310 s; also 3125 vw, 3054 vw, 3022 vw, 2952 vw, 2922 vw, 1596
m, 1576 vw, 1530 m, 1486 w, 1439 m, 1347 m, 1334 m, 1277 vw,
1236 w, 1206 w, 1175 w, 1156 vw, 1107 w, 1089 w, 1069 m, 1006
vs, 947 w, 905 w, 834 vw, 818 vw, 793 m, 754 s, 738 m, 713 m,
(TTP)Ru(15N(O)C6H4OMe-p)(1-MeIm)
IR (KBr, cmϪ1): νNO 1296 s, 1275 s.
(TTP)Ru(N(O)C6H2Me2OMe-p)(1-MeIm)
78% Isolated yield. IR (KBr, cmϪ1): νNO 1321 s, 1309 s; also 3124
vw, 3019 vw, 2951 vw, 2920 w, 1530 m, 1469 w, 1453 w, 1347 m,
1286 w, 1214 m, 1181 m, 1127 w, 1109 m, 1091 w, 1072 m, 1007
1
vs, 947 vw, 885 vw, 848 vw, 799 s, 717 m, 615 vw, 524 m. H
NMR (CDCl3): δ 8.38 (s, 8H, pyrrole-H of TTP), 7.95 (dd,
J = 7.6/2.0, 4H, o-H of TTP), 7.90 (dd, J = 7.6/2.0, 4H, oЈ-H of
TTP), 7.47 (br d, J = 7.6, 4H, m-H of TTP), 7.42 (br d, J = 7.6,
4H, mЈ-H of TTP), 4.71 (dd (apparent t), J = 1.2/1.2, 1H of
1-MeIm), 3.27 (s, 3H, N(O)C6H2Me2OMe-p), 2.65 (s, 12H, CH3
of TTP), 2.22 (s, 2H, o-H of N(O)C6H2Me2OMe-p), 2.16
(s, 3H, CH3 of 1-MeIm), 1.59 (br, 1H of 1-MeIm), 1.45 (s,
6H, N(O)C6H2Me2OMe-p), 1.23 (dd (apparent t), J = 1.2/1.2,
1H of 1-MeIm). Low-resolution mass spectrum (FAB):
m/z 1017 [(TTP)Ru(N(O)C6H2Me2OMe-p)(1-MeIm)]ϩ (14%),
935 [(TTP)Ru(N(O)C6H2Me2OMe-p)]ϩ (17%), 852 [(TTP)-
Ru(1-MeIm)]ϩ (37%), 770 [(TTP)Ru]ϩ (100%).
1
702 m, 664 w, 648 vw, 616 w, 529 w. H NMR (CDCl3): δ 8.37
(s, 8H, pyrrole-H of TPP), 8.01 (m, 8H, o-H of TPP), 7.63
(m, 12H, m,p-H of TPP), 6.26 (ddd (apparent td), J = 7.6/7.6/
1.2, 1H, p-H of o-tolNO), 5.81 (br d, J = 7.6, 1H, m-H of
o-tolNO), 5.74 (br dd (apparent br t), J = 7.6/7.6, 1H, mЈ-H of
o-tolNO), 5.28 (s, CH2Cl2), 4.71 (dd (apparent t), J = 1.2/1.2,
1H of 1-MeIm), 2.16 (s, 3H, CH3 of 1-MeIm), 2.07 (dd,
J = 7.6/1.2, 1H, o-H of o-tolNO), 1.50 (br, 1H of 1-MeIm),
1.14 (dd (apparent t), J = 1.2/1.2, 1H of 1-MeIm), Ϫ0.99 (s, 3H,
CH3 of o-tolNO). Low-resolution mass spectrum (FAB):
m/z 917 [(TPP)Ru(o-tolNO)(1-MeIm)]ϩ (17%), 835 [(TPP)-
Ru(o-tolNO)]ϩ (20%), 796 [(TPP)Ru(1-MeIm)]ϩ (39%), 714
[(TPP)Ru]ϩ (100%).
Solid-state structural determinations
Crystals of representative compounds were grown as follows:
(TTP)Ru(o-tolNO)2ؒCH2Cl2 (1; CH2Cl2–hexane (1 : 2), Ϫ20 ЊC,
3 weeks), (TTP)Ru(N(O)C6H2Me2OMe-p)2 (2; CH2Cl2–hexane
(1 : 10), Ϫ20 ЊC, 3 days), (TPP)Ru(PhNO)(py)ؒCH2Cl2 (3;
CH2Cl2–hexane (1 : 3), Ϫ20 ЊC, 1 week), (TTP)Ru(PhNO)(py)
The other (por)Ru(ArNO)(1-MeIm) compounds were gener-
ated similarly.
D a l t o n T r a n s . , 2 0 0 4 , 1 8 9 – 1 9 6
191