Effective Asymmetric Synthesis of CBI
Despite this interest, most studies detailing the prepa-
ration of optically active CBI derivatives have relied on
an effective semipreparative Chiralcel OD chromato-
graphic resolution30 of a racemic precursor for access to
the materials. Given the efficiency of the resolution (R )
1.30) and the material requirements for such potent
agents (L1210 IC50 ) 5-50 pM), a semipreparative OD
column that separates up to 100 mg per injection satisfies
most laboratory needs. Although several approaches to
the asymmetric synthesis of optically active precursors
have been disclosed, none have supplanted this or related
chromatographic resolutions.11 In part, this may be
attributed to the stringent optical purity (g99-99.9% ee)
required to distinguish the activity of an unnatural
enantiomer from that of its contaminant natural enan-
tiomer with many of the derivatives. The asymmetric
approaches include our own introduction31 of two comple-
mentary strategies that rely on an asymmetric hydrobo-
(12) (a) Boger, D. L.; Ishizaki, T.; Wysocki, R. J ., J r.; Munk, S. A.;
Kitos, P. A.; Suntornwat, O. J . Am. Chem. Soc. 1989, 111, 6461. (b)
Boger, D. L.; Ishizaki, T. Tetrahedron Lett. 1990, 31, 793. (c) Boger,
D. L.; Ishizaki, T.; Zarrinmayeh, H.; Kitos, P. A.; Suntornwat, O.
Bioorg. Med. Chem. Lett. 1991, 1, 55. (d) Boger, D. L.; Ishizaki, T.;
Sakya, S. M.; Munk, S. A.; Kitos, P. A.; J in, Q.; Besterman, J . M.
Bioorg. Med. Chem. Lett. 1991, 1, 115. (e) Boger, D. L.; Munk, S. A.;
Ishizaki, T. J . Am. Chem. Soc. 1991, 113, 2779. (f) Boger, D. L.; Munk,
S. A. J . Am. Chem. Soc. 1992, 114, 5487. (g) Boger, D. L.; Yun, W. J .
Am. Chem. Soc. 1994, 116, 5523. (h) Boger, D. L.; Yun, W.; Han, N.;
J ohnson, D. S. Bioorg. Med. Chem. 1995, 3, 611. (i) Boger, D. L.; Yun,
W.; Cai, H.; Han, N. Bioorg. Med. Chem. 1995, 3, 761. (j) Boger, D. L.;
Yun, W.; Han, N. Bioorg. Med. Chem. 1995, 3, 1429.
(13) Boger, D. L.; Yun, W.; Teegarden, B. R. J . Org. Chem. 1992,
57, 2873.
(14) Boger, D. L.; McKie, J . A. J . Org. Chem. 1995, 60, 1271.
(15) Drost, K. J .; Cava, M. P. J . Org. Chem. 1991, 56, 2240.
(16) Aristoff, P. A.; J ohnson, P. D. J . Org. Chem. 1992, 57, 6234.
Aristoff, P. A.; J ohnson, P. D.; Sun, D.; Hurley, L. H. J . Med. Chem.
1993, 36, 1956.
ration (80% ee)32 or a J acobsen epoxidation (92% ee),33
a
route based on a Sharpless AD reaction (30-60%, 70%
ee),16 Lown’s lipase-catalyzed resolution of 4 (1st cycle
48%, 74% ee; 2nd cycle 78%, 96-99% ee),34 and Moha-
madi’s asymmetric hydroboration (58%, 40% ee)35 (Figure
2).
Over the course of many years, we have periodically
examined an attractive approach that is based on the
enzymatic desymmetrization of diol 12. The lipases that
were examined all provided low conversions or low ee’s
and typically required near stoichiometric, rather than
catalytic, amounts of enzyme. In line with these findings,
Lown reported a resolution of 4 (Figure 2, vs desymme-
trization) that requires 3.1 g of enzyme/g of substrate and
two reaction cycles to achieve satisfactory results (37%,
96-99% ee).34 To date, the most successful implementa-
tion of such an approach was described by Cheˆnevert
with supported PPL (porcine pancreatic lipase) in an
asymmetric synthesis of a precursor to the CI (1,2,7,7a-
tetrahydrocyclopropa[c]indol-4-one) alkylation subunit
(Scheme 1).36 Still, modest conversions and nonoptimal
ee’s were observed especially for the approach leading
to the natural enantiomer, and the analogous CBI
precursors are not effective substrates for PPL.
Recently, Martin reported a total synthesis of FR900482,
illustrating what may be the first example of a lipase
capable of effectively acting on substrates resembling the
size and structure of typical CBI precursors.37 A diol
substrate similar to the one we examined was enanti-
oselectively acylated with a highly purified, commercially
available Pseudomonas sp. lipase (Sigma), affording
excellent yields and ee’s (68%, >95% ee) even when used
in a catalytic versus near stoichiometric quantity. In
Martin’s efforts, alternative and less effective lipases
were examined with results analogous to our own obser-
vations. Herein, we report an effective asymmetric
(17) Boger, D. L.; Boyce, C. W.; Garbaccio, R. M.; Searcey, M.
Tetrahedron Lett. 1998, 39, 2227.
(18) (a) Boger, D. L.; Brunette, S. R.; Garbaccio, R. M. J . Org. Chem.
2001, 66, 5163. (b) Boger, D. L.; Hughes, T. V.; Hedrick, M. P. J . Org.
Chem. 2001, 66, 2207. (c) Boger, D. L.; Boyce, C. W.; Garbaccio, R. M.;
Searcey, M.; J in, Q. Synthesis 1999, 1505. (d) Boger, D. L.; Santillan,
A., J r.; Searcey, M.; J in, Q. J . Org. Chem. 1999, 64, 5241. (e) Boger,
D. L.; Santillan, A., J r.; Searcey, M.; J in, Q. J . Am. Chem. Soc. 1998,
120, 11554. (f) Boger, D. L.; Han, N. Bioorg. Med. Chem. 1997, 5, 233.
(g) Boger, D. L.; Garbaccio, R. M.; J in, Q. J . Org. Chem. 1997, 62, 8875.
(19) MCBI: Boger, D. L.; McKie, J . A.; Cai, H.; Cacciari, B.; Baraldi,
P. G. J . Org. Chem. 1996, 61, 1710. CCBI: Boger, D. L.; Han, N.; Tarby,
C. M.; Boyce, C. W.; Cai, H.; J in, Q.; Kitos, P. A. J . Org. Chem. 1996,
61, 4894. Boger, D. L.; McKie, J . A.; Han, N.; Tarby, C. M.; Riggs, H.
W.; Kitos, P. A. Bioorg. Med. Chem. Lett. 1996, 6, 659. CNA: Boger,
D. L.; Turnbull, P. J . Org. Chem. 1997, 62, 5844. Iso-CI/Iso-CBI: Boger,
D. L.; Garbaccio, R. M.; J in, Q. J . Org. Chem. 1997, 62, 8875. CBIn:
Boger, D. L.; Turnbull, P. J . Org. Chem. 1998, 63, 8004. CPyI: Boger,
D. L.; Boyce, C. W. J . Org. Chem. 2000, 65, 4088.
(20) Boger, D. L.; Schmitt, H.; Fink, B. E.; Hedrick, M. P. J . Org.
Chem. 2001, 66, 6654.
(21) Boger, D. L.; Stauffer, F.; Hedrick, M. P. Bioorg. Med. Chem.
Lett. 2001, 11, 2021.
(22) Parrish, J . P.; Kastrinsky, D. B.; Boger, D. L. Org. Lett. 2003,
5, 2577.
(23) Parrish, J . P.; Kastrinsky, D. B.; Stauffer, F.; Hedrick, M. P.;
Hwang, I.; Boger, D. L. Bioorg. Med. Chem. 2003, 11, 3815.
(24) (a) Wang, Y.; Yuan, H.; Wright, S. C.; Wang, H.; Larrick, J . W.
Bioorg. Med. Chem. 2003, 11, 1569. (b) Wang, Y.; Li, L.; Ye, W.; Tian,
Z.; J iang, W.; Wang, H.; Wright, S. C.; Larrick, J . W. J . Med. Chem.
2003, 46, 634. (c) Wang, Y.; Yuan, H.; Ye, W.; Wright, S. C.; Wang, H.;
Larrick, J . W. J . Med. Chem. 2000, 43, 1541.
(25) (a) Wang, Y.; Dziegielewski, J .; Chang, A. Y.; Dervan, P. B.;
Beerman, T. A. J . Biol. Chem. 2002, 277, 42431. (b) Chang, A. Y.;
Dervan, P. B. J . Am. Chem. Soc. 2000, 122, 4856.
(26) (a) Kumar, R.; Lown, J . W. Org. Biomol. Chem. 2003, 1, 2630.
(b) Kumar, R.; Rai, D.; Ching, S.; Ko, C.; Lown, J . W. Heterocycl.
Commun. 2002, 8, 521. (c) Kumar, R.; Lown, J . W. Org. Lett. 2002, 4,
1851. (d) J ia, G.; Lown, J . W. Bioorg. Med. Chem. 2000, 8, 1607. (e)
J ia, G.; Iida, H.; Lown, J . W. Synlett 2000, 5, 603. (f) J ia, G.; Iida, H.;
Lown, J . W. Heterocycl. Commun. 1999, 5, 497. (g) J ia, G.; Iida, H.;
Lown, J . W. Heterocycl. Commun. 1998, 4, 557.
(27) (a) Tercel, M.; Stribbling, S. M.; Sheppard, H.; Siim, B. G.; Wu,
K.; Pullen, S. M.; Botting, K. J .; Wilson, W. R.; Denny, W. A. J . Med.
Chem. 2003, 46, 2132. (b) Gieseg, M. A.; Matejovic, J .; Denny, W. A.
Anti-Cancer Drug Des. 1999, 14, 77. (c) Hay, M. P.; Sykes, B. M.;
Denny, W. A.; Wilson, W. R. Bioorg. Med. Chem. Lett. 1999, 9, 2237.
(d) Atwell, G. J .; Tercel, M.; Boyd, M.; Wilson, W. R.; Denny, W. A. J .
Org. Chem. 1998, 63, 9414. (e) Atwell, G. J .; Wilson, W. R.; Denny, W.
A. Bioorg. Med. Chem. Lett. 1997, 7, 1493.
(31) Boger, D. L.; McKie, J . A.; Boyce, C. W. Synlett 1997, 515.
(32) Brown, H. C. Chemtracts: Org. Chem. 1988, 1, 77. Brown, H.
C.; Singaram, B. Acc. Chem. Res. 1988, 21, 287. Brown, H. C.;
Singaram, B. Pure Appl. Chem. 1987, 59, 879.
(33) Zhang, W.; Loebach, J . L.; Wilson, S. R.; J acobsen, E. N. J . Am.
Chem. Soc. 1990, 112, 2801.
(34) Ling, L.; Xie, Y.; Lown, J . W. Heterocyl. Commun. 1997, 3, 405
(13 g of lipase for 4.12 g of 4, 18 h, 48%, 74% ee; 2nd cycle 78%, 96%
ee). For a similar extension to the CPI alkylation subunit of CC-1065,
see: Lei, L.; Lown, J . W. Chem. Commun. 1996, 1559 (PSL, 72 h, 1st
cycle 49%, 72% ee; 2nd cycle 75%, >99% ee).
(35) Mohamadi, F.; Spees, M. M.; Staten, G. S.; Marder, P.; Kipka,
J . K.; J ohnson, D. A.; Boger, D. L.; Zarrinmayeh, H. J . Med. Chem.
1994, 37, 232.
(28) Townes, H.; Summerville, K.; Purnell, B.; Hooker, M.; Madsen,
E.; Hudson, S.; Lee, M. Med. Chem. Res. 2002, 11, 248.
(29) (a) Tietze, L. F.; Herzig, T.; Feuerstein, T.; Schuberth, I. Eur.
J . Org. Chem. 2002, 10, 1634. (b) Tietze, L. F.; Feuerstein, T.; Fecher,
A.; Haunert, F.; Panknin, O.; Borchers, U.; Schuberth, I.; Alves, F.
Angew. Chem., Int. Ed. 2002, 41, 759. (c) Tietze, L. F.; Herzig, T.;
Fecher, A.; Haunert, F.; Schuberth, I. ChemBioChem 2001, 2, 758.
(30) Boger, D. L.; Yun, W. J . Am. Chem. Soc. 1994, 116, 7996.
(36) Cheˆnevert, R.; Courchesne, G. Chem. Lett. 1997, 11. See also:
Shishido, K.; Haruna, S.; Yamamura, C.; Iitsuka, H.; Nemoto, H.;
Shinohara, Y.; Shibuya, M. Bioorg. Med. Chem. Lett. 1997, 7, 2617.
(37) Fellows, I. M.; Kaelin, D. E.; Martin, S. F. J . Am. Chem. Soc.
2000, 122, 10781.
J . Org. Chem, Vol. 69, No. 7, 2004 2285