558 Bull. Chem. Soc. Jpn., 77, No. 3 (2004)
Synthesis of 2,4-Disubstituted Quinolines
to give 6g (64 mg, 28%): a viscous oil; Rf 0.20 (acetone); IR (neat)
1604 cmꢂ1; 1H NMR ꢂ 0.80 (3H, t, J ¼ 7:3 Hz), 1.9–2.1 (2H, m),
2.31 (6H, s), 3.45 (1H, dd, J ¼ 8:9 and 4.6 Hz), 3.92 (3H, s), 3.97
(3H, s), 6.95–7.15 (3H, m), 7.41 (1H, s), 7.47 (1H, t, J ¼ 8:2 Hz),
7.69 (1H, t, J ¼ 8:2 Hz), 7.96 (1H, d, J ¼ 8:2 Hz), and 8.16 (1H, d,
J ¼ 8:2 Hz); MS m=z (%) 350 (Mþ, 0.04) and 292 (100). Found: C,
75.33; H, 7.52; N, 7.76%. Calcd for C22H26N2O2: C, 75.40; H,
7.48; N, 7.99%.
Lett., 44, 255 (2003); B. C. Ranu, A. Hajra, S. S. Ley, and U. Jana,
Tetrahedron, 59, 813 (2003), and references cited therein.
6
For utilities of quinolines as intermediates for the design of
biologically active compounds: G. Jones, ‘‘Comprehensive Heter-
ocyclic Chemistry,’’ ed by A. R. Katritzky and C. W. Rees, Perga-
mon, Oxford (1984), Vol. 2, p. 395; T. Suresh, R. N. Kumar, and P.
S. Mohan, Heterocycl. Commun., 9, 83 (2003).
7
For biological importance of quinoline derivatives: J. A.
Joule, K. Mills, and G. F. Smith, ‘‘Heterocyclic Chemistry,’’ 3rd
ed, Chapman & Hall, London (1995), p. 120; T. Shoda, S.
Taketomi, and A. Baba, Eur. Patent, 634169 (1995); Chem. Abstr.,
122, 187610b (1995); M. Antini, A. Cappelli, S. Vomero, G.
Giorgi, T. Langer, M. Hamon, N. Merahi, B. M. Emerit, A.
Cagnotto, M. Skorupska, T. Mennini, and J. C. Pinto, J. Med.
Chem., 38, 2692 (1995); P. K. Desai, P. Desai, D. Macchi, C. M.
Desai, and D. Patel, Indian J. Chem., 35B, 871 (1996); X.-M.
Cheng, C. Lee, S. Klutchko, T. Winters, E. E. Reynolds, K. M.
Welch, M. A. Flynn, and A. M. Doherty, Bioorg. Med. Chem. Lett.,
6, 2999 (1996); G. A. M. Giardina, H. M. Sarau, C. Farina, A. D.
Medhurst, M. Grugni, L. F. Raveglia, D. B. Schmidt, R. Rigolio,
M. Luttmann, V. Vecchietti, and D. W. P. Hay, J. Med. Chem.,
40, 1794 (1997); B. Kalluraya and S. Sreevinasa, Farmaco, 53,
399 (1998); A. von Sprecher, M. Gerspacher, A. Beck, S. Kimmel,
H. Weinstner, G. P. Anderson, U. Niederhauser, N. Subramanian,
and M. A. Bray, Bioorg. Med. Chem. Lett., 8, 965 (1998); D.
We thank Mrs. Miyuki Tanmatsu of this Department for her
work in determining the mass spectra and performing combus-
tion analyses. This work was supported in part by a Grant-in-
Aid for Scientific Research No. 15550092 from the Ministry
of Education, Culture, Sports, Science and Technology.
References
1
K. Kobayashi, T. Matoba, S. Irisawa, T. Matsumoto, O.
Morikawa, and H. Konishi, Chem. Lett., 1998, 551.
K. Kobayashi, S. Irisawa, T. Matoba, T. Matsumoto, K.
2
Yoneda, O. Morikawa, and H. Konishi, Bull. Chem. Soc. Jpn.,
74, 1109 (2001).
3
K. Kobayashi, T. Matsumoto, S. Irisawa, K. Yoneda, O.
Morikawa, and H. Konishi, Heterocycles, 55, 973 (2001).
Recently, 2-functionalized quinoline derivatives have been
4
´
prepared by reactions of 2-metalated quinolines, which were gen-
erated by direct lithiation of quinolines4a or halogen–metal
exchange of 2-haloquinolines,4b,c with electrophiles: a) P. Gros,
Doube, M. Blouin, C. Brideau, C.-C. Chen, S. Desmarais, D.
Eithier, J. P. Falgueyret, R. W. Frieson, M. Girard, V. Girard, J.
Guay, D. Riendeau, P. Tagari, and R. N. Young, Bioorg. Med.
Chem. Lett., 8, 1255 (1998); M. E. Zwaagstra, H. Timmerman,
A. C. van de Stolpe, F. J. de Kanter, M. Tamura, Y. Wada, and
M. Q. Zhang, J. Med. Chem., 41, 1428 (1998); M. Croisy-Delcey,
A. Croisy, D. Carrez, C. Huel, A. Chaironi, P. Ducrot, E. Bisagni,
L. Jin, and G. Leclercq, Bioorg. Med. Chem., 8, 2629 (2000); V. K.
Dua, S. N. Sinha, S. Biswas, N. Valecha, S. K. Puri, and V. P.
Sharma, Bioorg. Med. Chem., 12, 3587 (2002); S. Gallo, S. Atifi,
`
Y. Fort, and P. Caubere, J. Chem. Soc., Perkin Trans. 1, 1997,
3597. b) I. Gomez, E. Alonso, D. J. Ramon, and M. Yus, Tetrahe-
´
´
´
dron, 56, 4043 (2000). c) S. Dumouchel, F. Mongin, F. Trecourt,
´
and G. Queguiner, Tetrahedron Lett., 44, 2033 (2003).
For recent reports on the general synthesis of quinoline de-
5
rivatives: D. S. Coffey, S. A. May, and A. M. Ratz, ‘‘Progress in
Heterocyclic Chemistry,’’ ed by G. W. Gribble and T. L. Gilchrist,
Pergamon, London (2001), Vol. 13, p. 243; H. Tokuyama, M. Sato,
T. Ueda, and T. Fukuyama, Heterocycles, 55, 105 (2001); M. A.
´
A. Mahamoud, C. Santelli-Rouvier, K. Wolfart, J. Molnar, and
J. Barbe, Eur. J. Med. Chem., 38, 19 (2003); D. Varlet, E.
Fourmaintraux, P. Depreux, and D. Lesieur, Heterocycles, 60,
385 (2003); L. Strekowski, M. Say, M. Henary, P. Ruiz, L. Manzel,
D. E. Macfarlene, and A. J. Bojarski, J. Med. Chem., 46, 1242
(2003), and references cited therein.
8
tives: A. Fournet, A. A. Barrios, V. Munoz, R. Hocquemiller, A.
Cave, and J. Bruneton, Antimicrob. Agents Chemother., 37, 859
(1993); A. Fournet, M. E. Ferreira, A. Rojas de Arias, S. Torres
de Ortiz, S. Fuentes, H. Nakayama, and A. Schinini, Antimicrob.
Agents Chemother., 40, 2447 (1996); J. C. Gantier, A. Fournet,
M. H. Munos, and R. Hocquemiller, Planta Med., 40, 285
(1996); K. Mekouar, J. F. Mouscadet, D. Desmaele, F. Subra, H.
¨
´
Leh, D. Savoure, C. Auclair, and J. d’Angelo, J. Med. Chem.,
41, 2846 (1998); F. Zouhiri, J. F. Mouscadet, K. Mekouar, D.
`
Fakhfakh, X. Franck, R. Hocquemiller, and B. Figadere, J. Orga-
nomet. Chem., 624, 131 (2001); H. Amii, Y. Kishikawa, and K.
Uneyama, Org. Lett., 3, 1109 (2001); M. Karikomi, H. Tsukuda,
and T. Toda, Heterocycles, 55, 1249 (2001); N. J. Tom and E.
M. Ruel, Synthesis, 2001, 1351; M. Shimizu, A. Oishi, Y. Taguchi,
T. Sano, Y. Gama, and I. Shibuya, Heterocycles, 55, 1971 (2001);
C. S. Cho, J. S. Kim, T.-J. Kim, and S. C. Shim, Chem. Commun.,
2001, 2576; J. N. Kim, H. J. Lee, K. Young, and H. S. Kim, Tetra-
hedron Lett., 42, 3737 (2001); M. A. Fakhfakh, X. Frank, A.
For biological activities of 2-substituted quinoline deriva-
´
`
Fournet, R. Hocquemiller, and B. Figadere, Tetrahedron Lett.,
42, 3847 (2001); X. G. Li, X. Cheng, and Q. L. Zhou, Synth.
Commun., 32, 2477 (2002); G. Dominguez, L. Casarrubios, J.
Rodoriguez-Noriega, and J. Perez-Castells, Helv. Chim. Acta, 85,
2856 (2002); M. A. Fakhfakh, X. Franck, A. Fournet, R.
`
´
Hocquemiller, and B. Figadere, Synth. Commun., 32, 2863
Desmaele, D. Savoure, H. Leh, F. Subra, M. Le Bret, C. Auclair,
¨
(2002); S. Cacchi, G. Fabrizi, A. Goggiamani, M. Moreno-Man˜as,
and A. Vallribera, Tetrahedron Lett., 43, 5537 (2002); J. N. Kim,
Y. M. Chung, and Y. J. Im, Tetrahedron Lett., 43, 6209 (2002);
H. Z. S. Huma, R. Halder, S. S. Kalra, J. Das, and J. Iqbal, Tetra-
hedron Lett., 43, 6485 (2002); B. S. Lee, J. H. Lee, and D. Y. Chi,
J. Org. Chem., 67, 7884 (2002); R. E. Swenson, T. J. Sowin, and H.
Q. Zhang, J. Org. Chem., 67, 9182 (2002); B. Jiang and Y.-G. Si, J.
Org. Chem., 67, 9449 (2002); A. Arcadi, M. Chiarini, S. D.
Giuseppe, and F. Marinelli, Synlett, 2003, 203; S. J. Song, S. J.
Cho, D. K. Park, T. W. Kwon, and S. A. Jenekhe, Tetrahedron
and J. d’Angelo, J. Med. Chem., 43, 1533 (2000); H. Nakayama,
M. E. Ferreira, A. Rojas de Arias, N. V. de Bilbao, A. Schinini,
and A. Fournet, Phytother. Res., 15, 630 (2001); A. Fournet, R.
Mahieux, M. A. Fakhfakh, X. Frank, R. Hocquemiller, and B.
`
Frigdere, Bioorg. Med. Chem. Lett., 13, 891 (2003).
For natural occurrence of biologically active quinoline de-
rivatives: A. Fournet, B. Vagnuer, P. Richomme, and J. Bruneton,
9
Can. J. Chem., 67, 2116 (1989); A. Fournet, R. Hocquemiller, F.
´
Roblot, A. Cave, P. Richomme, and J. Bruneton, J. Nat. Prod.,
56, 1547 (1993); J. P. Michael, Nat. Prod. Rep., 12, 465 (1995);