ORGANIC
LETTERS
2012
Vol. 14, No. 3
824–827
A New Synthesis of γ-Butyrolactones via
AuCl3- or Hg(II)-Catalyzed Intramolecular
Hydroalkoxylation of 4-Bromo-3-yn-1-ols†
Maddi Sridhar Reddy,* Yalla Kiran Kumar, and Nuligonda Thirupathi
Medicinal and Process Chemistry Division, Central Drug Research Institute, CSIR,
Lucknow 226 001, India
msreddy@cdri.res.in; sridharreddymaddi@yahoo.com
Received December 15, 2011
ABSTRACT
An efficient conversion of 4-bromo-3-yn-1-ols to γ-butyrolactones via AuCl3-catalyzed electrophilic cyclization (hydroxyl-assisted regioselective
hydration) in wet toluene is described. Various secondary and tertiary alcohols including benzylic systems were found to be equally reactive with
moderate to excellent yields obtained in all cases.
Cycloisomerization via intramolecular hydroalkoxyla-
tion and hydroamination of alkynes with tethered hydro-
xyl or amino groups is currently an emerging method for
the synthesis of various heterocycles such as pyrroles,
furans, quinolines, spiroketals, and many new frameworks
whicharenot otherwise readily accessible.1,2 Variousmetal
ions including Au(I), Au(III), Hg(II), Fe(III), Zn(II), Ag-
(I), Pd(0), Pd(II), Cu(II), Ni, Co, and Ir have been em-
ployed to functionalize alkynes.1,2 In particular, the recent
explosion of interest in gold catalysis has not only made the
several existing methods easier but also led to the synthesis
of a variety of novel heterocyclic architectures.1 The
popularity of such chemistry stems from the easy access
to alkyne intermediates and the brevity of approach and
because the alkyne intermediates are inert to various
reagents and reaction conditions and, hence, can be used
to conceal the required subunit until an appropriate point
is reached in a long total synthesis. We herein report for the
first time the conversion of 4-bromo-3-yn-1-ols to butyr-
olactones using AuCl3 in aqueoustoluene (Scheme 1, eq3).
The starting substrates, bromoalkynols, can be easily
accessed from alkynes, alkynylsilanes, and dibromoolefins
(3) (a) Gallagher, P. W.; Terstiege, I.; Maleczka, R. E. J. Am. Chem.
Soc. 2001, 123, 3194–3204. (b) Boden, C. D. J.; Pattenden, G.; Ye, T.
J. Chem. Soc., Perkin Trans. 1 1996, 2417–2419. (c) Gonzalez, I. Cl.;
Forsyth, C. J. J. Am. Chem. Soc. 2000, 122, 9099–9108. (d) Lu, W.;
Zheng, G.; Cai, J. Tetrahedron 1999, 55, 7157–7168.
(4) (a) Bandichhor, R.; Nosse, B.; Reiser, O. Top. Curr. Chem. 2005,
243, 43–72. (b) Miyabe, H.; Fujji, K.; Goto, T.; Naito, T. Org. Lett. 2000,
2, 4071–4074. (c) Peng, Z.-H.; Woerpel, K. A. Org. Lett. 2001, 3, 675–
678. (d) Koch, S. S. C.; Chamberlin, A. R. Enantiomerically Pure γ-
Butyrolactones; Atta-ur-Rahman, Ed.; Elsevier Science: Amsterdam, 1995;
pp 687À725. (d) Fernandez, A.-M.; Plaquevent, J.-C.; Duhamel, L.
J. Org. Chem. 1997, 62, 4007–4014. (e) Collins, I. J. Chem. Soc., Perkin
Trans. 1 1998, 1869–1888.
(5) For a few examples of synthesis of lactones, see: (a) Huang, L.;
Jiang, H.; Qi, C.; Liu, X. J. Am. Chem. Soc. 2010, 132, 17652–17654. (b)
Dohi, T.; Takenaga, N.; Goto, A.; Maruyama, A.; Kita, Y. Org. Lett.
2007, 9, 3129–3132. (c) Schomaker, M. M.; Travis, B. R.; Borhan, B.
Org. Lett. 2003, 5, 3089–3092. (d) Seitz, M.; Reiser, O. Curr. Opin. Chem.
Biol. 2005, 9, 285–292. (e) Ogliaruso, M. A.; Wolfe, J. F. In Synthesis of
Lactones and Lactams; John Wiley & sons: New York, 1993. (f) Trost,
B. M.; Rhee, Y. H. J. Am. Chem. Soc. 1999, 121, 11680–11683. (g) Nosse,
B.; Chhor, R. B.; Jeong, W. B.; Bohm, C.; Reiser, O. Org. Lett. 2003, 5,
941–944. (h) Compain, P.; Gore, J.; Vatele, J. ÀM. Tetrahedron 1996, 52,
10405–10416. (I) Gutierrez, J. L. G.; Jimenez-Cruz, F.; Espinosa, N. R.
Tetrahedron Lett. 2005, 46, 803–803.
(1) For some recent examples, see: (a) Yao, T.; Zhang, X.; Larock,
R. C. J. Am. Chem. Soc. 2004, 126, 11164–11165. (b) Kothandaraman,
P.; Rao, W.; Foo, S. J.; Chan, P. W. H. Angew. Chem., Int. Ed. 2010, 49,
4619–4623. (c) Belting, V.; Krause, N. Org. Lett. 2006, 8, 4489–4492. (d)
Patil, N. T.; Kavthe, R. D.; Shinde, V. S.; Sridhar, B. J. Org. Chem. 2010,
75, 3371–3380. (e) Fang, C.; Pang, Y.; Forsyth, C. J. Org. Lett. 2010, 12,
4528–4531. (f) Nishizawa, M.; Imagawa, H.; Yamamoto, H. Org.
Biomol. Chem. 2010, 8, 511–521. (g) Carney, M. M.; Donoghue, P. J.;
Wuest, W. M.; Wiest, O.; Helquist, P. Org. Lett. 2008, 10, 3903–3906. (h)
Sandelier, M. J.; DeShong, P. Org. Lett. 2007, 9, 3209–3212 and the
references therein.
(2) (a) Ravindar, K.; Reddy, M. S.; Deslongchamps, P. Org. Lett.
2011, 13, 3178–3181. (b) Ravindar, K.; Reddy, M. S.; Lindqvist, L.;
Pelletier, J.; Deslongchamps, P. J. Org. Chem. 2011, 76, 1269–1284. (c)
Ravindar, K.; Reddy, M. S.; Lindqvist, L.; Pelletier, J.; Deslongchamps,
P. Org. Lett. 2010, 12, 4420–4423.
r
10.1021/ol2033493
Published on Web 01/25/2012
2012 American Chemical Society