Organic Letters
Letter
(5) Tilstam, U.; Defrance, T.; Giard, T.; Johnson, M. D. The
Newman−Kwart Rearrangement Revisited: Continuous Process
under Supercritical Conditions. Org. Process Res. Dev. 2009, 13,
321−323.
(17) (a) Waldvogel, S. R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C. J.
Electrochemical Arylation Reaction. Chem. Rev. 2018, 118, 6706−
6765. (b) Koleda, O.; Broese, T.; Noetzel, J.; Roemelt, M.; Suna, E.;
Francke, R. Synthesis of Benzoxazoles Using Electrochemically
Generated Hypervalent Iodine. J. Org. Chem. 2017, 82, 11669−
11681. (c) Broese, T.; Francke, R. Electrosynthesis Using a Recyclable
Mediator-Electrolyte System Based on Ionically Tagged Phenyl
Iodide and 1,1,1,3,3,3-Hexafluoroisopropanol. Org. Lett. 2016, 18,
5896−5899.
(6) Razzaq, T.; Glasnov, T. N.; Kappe, C. O. Continuous-Flow
Microreactor Chemistry under High-Temperature/Pressure Condi-
tions. Eur. J. Org. Chem. 2009, 2009, 1321−1325.
(7) (a) Lin, S.; Moon, B.; Porter, K. T.; Rossman, C. A.; Zennie, T.;
Wemple, J. A Continuous Procedure for Preparation of para-
functionalized Aromatic Thiols Using Newman−Kwart Chemistry.
Org. Prep. Proced. Int. 2000, 32, 547−555. (b) Moseley, J. D.;
Woodman, E. K. Scaling-Out Pharmaceutical Reactions in an
Automated Stop-Flow Microwave Reactor. Org. Process Res. Dev.
2008, 12, 967−981. (c) Moseley, J. D.; Lenden, P.; Lockwood, M.;
Ruda, K.; Sherlock, J.-P.; Thomson, A. D.; Gilday, J. P. A Comparison
of Commercial Microwave Reactors for Scale-Up within Process
Chemistry. Org. Process Res. Dev. 2008, 12, 30−40. (d) Bowden, S. A.;
Burke, J. N.; Gray, F.; McKown, S.; Moseley, J. D.; Moss, W. O.;
Murray, P. M.; Welham, M. J.; Young, M. J. A New Approach to
Rapid Parallel Development of Four Neurokinin Antagonists. Org.
Process Res. Dev. 2004, 8, 33−44.
(8) Burns, M.; Lloyd-Jones, G. C.; Moseley, J. D.; Renny, J. S. The
molecularity of the Newman−Kwart rearrangement. J. Org. Chem.
2010, 75, 6347−6353.
(9) (a) Newman, M. S.; Karnes, H. A. The Conversion of Phenols to
Thiophenols via Dialkylthiocarbamates. J. Org. Chem. 1966, 31,
3980−3984. (b) Kwart, H.; Evans, E. R. The Vapor Phase
Rearrangement of Thioncarbonates and Thioncarbamates. J. Org.
Chem. 1966, 31, 410−413.
(10) (a) Villemin, D.; Hachemi, M.; Lalaoui, M. Potassium Fluoride
on Alumina: Synthesis of O-Aryl N,N-Dimethylthiocarbamates and
their Rearrangement into S-Aryl N,N-Dimethyl-Thiocarbamates
Under Microwave Irradiation. Synth. Commun. 1996, 26, 2461−
2471. (b) Moseley, J. D.; Lenden, P. A high temperature investigation
using microwave synthesis for electronically and sterically disfavoured
substrates of the Newman−Kwart rearrangement. Tetrahedron 2007,
63, 4120−4125. (c) Moseley, J. D.; Lenden, P.; Thomson, A. D.;
Gilday, J. P. The importance of agitation and fill volume in small scale
scientific microwave reactors. Tetrahedron Lett. 2007, 48, 6084−6087.
(d) Hoffmann, I.; Schatz, J. Microwave-mediated Newman−Kwart
rearrangement in water. RSC Adv. 2016, 6, 80692−80699.
(11) Brooker, S.; Caygill, G. B.; Croucher, P. D.; Davidson, T. C.;
Clive, D. L. J.; Magnuson, S. R.; Cramer, S. P.; Ralston, C. Y.
Conversion of some substituted phenols to the corresponding masked
thiophenols, synthesis of a dinickel(II) dithiolate macrocyclic complex
and isolation of some metal- and ligand-based oxidation products. J.
Chem. Soc., Dalton Trans. 2000, 3113−3121.
̈
(18) Francke, R.; Cericola, D.; Kotz, R.; Weingarth, D.; Waldvogel,
S. R. Novel electrolytes for electrochemical double layer capacitors
based on 1,1,1,3,3,3-hexafluoropropan-2-ol. Electrochim. Acta 2012,
62, 372−380.
(19) (a) We note that the term electrocatalysis is widely known as
the use of homogeneous or heterogeneous catalysts in electrochemical
reactions. However, in the field of organic electrosynthesis, the term is
rather understood as the use of substoichiometric amounts of charge
for catalyzing reactions (see refs 19b−d). (b) Yamamoto, T.; Riehl,
B.; Naba, K.; Nakahara, K.; Wiebe, A.; Saitoh, T.; Waldvogel, S. R.;
Einaga, Y. A solvent-directed stereoselective and electrocatalytic
synthesis of diisoeugenol. Chem. Commun. 2018, 54, 2771−2773.
(c) Okada, Y.; Yamaguchi, Y.; Ozaki, A.; Chiba, K. Aromatic ″Redox
Tag″-assisted Diels-Alder reactions by electrocatalysis. Chem. Sci.
2016, 7, 6387−6393. (d) Chiba, K.; Miura, T.; Kim, S.; Kitano, Y.;
Tada, M. Electrocatalytic Intermolecular Olefin Cross-Coupling by
Anodically Induced Formal [2 + 2] Cycloaddition between Enol
Ethers and Alkenes. J. Am. Chem. Soc. 2001, 123, 11314−11315.
(20) (a) The Faradaic efficiency with values >100% has previously
been used for characterizing electrocatalyzed reactions (see, for
instance, 20b). (b) Imada, Y.; Okada, Y.; Chiba, K. Investigating
radical cation chain processes in the electrocatalytic Diels-Alder
reaction. Beilstein J. Org. Chem. 2018, 14, 642−647.
(21) For reviews, see: (a) Atobe, M.; Tateno, H.; Matsumura, Y.
Applications of Flow Microreactors in Electrosynthetic Processes.
Chem. Rev. 2018, 118, 4541−4572. (b) Pletcher, D.; Green, R. A.;
Brown, R. C. D. Flow Electrolysis Cells for the Synthetic Organic
Chemistry Laboratory. Chem. Rev. 2018, 118, 4573−4591.
(c) Folgueiras-Amador, A. A.; Wirth, T. Perspectives in flow
electrochemistry. J. Flow Chem. 2017, 7, 94−95. (d) Xu, F.; Qian,
X.-Y.; Li, Y.-J.; Xu, H.-C. Synthesis of 4H-1,3-Benzoxazines via Metal-
and Oxidizing Reagent-Free Aromatic C−H Oxygenation. Org. Lett.
2017, 19, 6332−6335. (e) Horcajada, R.; Okajima, M.; Suga, S.;
Yoshida, J.-i. Microflow electroorganic synthesis without supporting
electrolyte. Chem. Commun. 2005, 1303−1305.
(22) Watts, K.; Baker, A.; Wirth, T. Electrochemical Synthesis in
Microreactors. J. Flow Chem. 2015, 4, 2−11.
(12) Harvey, J. N.; Jover, J.; Lloyd-Jones, G. C.; Moseley, J. D.;
Murray, P.; Renny, J. S. The Newman−Kwart rearrangement of O-
aryl thiocarbamates: Substantial reduction in reaction temperatures
through palladium catalysis. Angew. Chem., Int. Ed. 2009, 48, 7612−
7615.
(13) Perkowski, A. J.; Cruz, C. L.; Nicewicz, D. A. Ambient-
Temperature Newman−Kwart Rearrangement Mediated by Organic
Photoredox Catalysis. J. Am. Chem. Soc. 2015, 137, 15684−15687.
(14) Pedersen, S. K.; Ulfkjaer, A.; Newman, M. N.; Yogarasa, S.;
Petersen, A. U.; Sølling, T. I.; Pittelkow, M. Inverting the Selectivity of
the Newman−Kwart Rearrangement via One Electron Oxidation at
Room Temperature. J. Org. Chem. 2018, 83, 12000−12006.
(15) The Pt wire cathode has been used in all experiments depicted
in Table 1, Figure 2, and Scheme 1. In an additional experiment
(conversion of 2a to 3a), we have tested a stainless steel wire as
cathode material, which turned out to be equally effective.
́
́
(16) (a) Begue, J.-P.; Bonnet-Delpon, D.; Crousse, B. Fluorinated
Alcohols: A New Medium for Selective and Clean Reaction. Synlett
2004, 18−29. (b) Eberson, L.; Hartshorn, M. P.; Persson, O.
1,1,1,3,3,3-Hexafluoropropan-2-ol as a solvent for the generation of
highly persistent radical cations. J. Chem. Soc., Perkin Trans. 2 1995, 2,
1735.
E
Org. Lett. XXXX, XXX, XXX−XXX