ORGANIC
LETTERS
2000
Vol. 2, No. 13
1799-1801
A Facile Route to
Indolo[2,1-a]isoquinolines and
Dibenzopyrrocoline Alkaloids
Kazuhiko Orito,* Rika Harada, Shiho Uchiito, and Masao Tokuda
Laboratory of Organic Synthesis, DiVision of Molecular Chemistry,
Graduate School of Engineering, Hokkaido UniVersity, Sapporo 060-8628, Japan
Received March 14, 2000
ABSTRACT
Treatment of 1-(2′-bromobenzyl)-3,4-dihydroisoquinolines 2 in the presence of K2CO in boiling DMF efficiently provided a variety of alkoxy-
3
substituted indolo[2,1-a]isoquinolines 3. Application of this cyclization to 7-benzyloxyisoquinoline derivatives, followed by further elaboration
of the resultant 2-benzyloxy-5,6-dihydroindolo[2,1-a]isoquinolines 16a,b, led to the formal synthesis of dibenzopyrrocoline alkaloids, (±)-
cryptaustoline (1a) and (±)-cryptowoline (1b).
Indolo[2,1-a]isoquinoline has a unique nitrogen-containing
tetracyclic structure, characteristic of dibenzopyrrocoline
alkaloids, cryptaustoline 1a and cryptowoline 1b, isolated
As shown in Scheme 1, we initially encountered this
structure in the intramolecular cyclization products of
erythro-1-[(2′-bromopheny)hydroxymethyl]-1,2,3,4-tetra-
hydroisoquinolines 5, which were prepared in three more
(3) (a) Kametani, T.; Ogasawara, K. J. Chem. Soc. C 1967, 2208-2212.
(b) Benington, F.; Morin, R. D. J. Org. Chem. 1967, 32, 1050-1053. (c)
Kametani, T.; Fukumoto, K.; Nakano, T. J. Heterocycl. Chem. 1972, 9,
1363-1366. (d) Kametani, T.; Shibuya, S.; Kano, S. J. Chem. Soc., Perkin
Trans. 1 1973, 1212-1214. (e) Ahmad, I.; Gibson, M. Can. J. Chem. 1975,
53, 3660-3664. (f) Kessar, S. V.; Batra, S.; Nadir, U. K.; Gandhi, S. S.
Ind. J. Chem. 1975, 13, 1109-1112. (g) Mak, C.-P.; Brossi, A. Heterocycles
1979, 12, 1413-1416. (h) Boente, J. M.; Castedo, L.; Rodriguez de Lera,
A.; Saa´, J. M.; Suau, R.; Vidal, M. C. Tetrahedron Lett. 1983, 24, 2295-
2298. (i) Ambros, A.; von Angerer, A.; Wiegrebe, W. Arch. Pharm.
(Weinheim, Ger.) 1988, 321, 481-486. (j) Meyers, A. I.; Sielecki, T. M. J.
Am. Chem. Soc. 1991, 113, 2789-2790.
(4) (a) Robinson, R.; Sugasawa, S. J. Chem. Soc. 1932, 798-805. (b)
Harley-Mason, J. J. Chem. Soc. 1953, 1465-1466. (c) Hess, U.; Hiller,
K.; Schroeder, R. S. J. Prackt. Chem. 1977, 319, 568-572.
(5) Ninomiya, I.; Yasui, J.; Kiguchi, T. Heterocycles 1977, 6, 1855-
1860.
from the bark of Cryptocarya bowiei.1,2 Several methods for
construction of this structure,3-8 including the well-known
benzyne reaction3 or oxidative coupling4 of 1-benzyl-
isoquinolines, have been reported. Antileukemic and anti-
tumor activities of such bases have been reported, and their
ammonium salts have been expected to enhance the
activities.3I,9
(6) Takano, S.; Satoh, S.; Ogasawara, K. Heterocycles, 1987, 26, 1483-
1485.
(7) (a) Matthew, K. K.; Menon, K. N. Proc. Ind. Acad. Sci. 1949, 29A,
361-363. (b) Yasuda, S.; Hirasawa, T.; Yoshida, S.; Hanaoka, M. Chem.
Pharm. Bull. 1989, 37, 1682-1683.
(8) Eliott, E. W., Jr. J. Org. Chem. 1982, 47, 5398-5400.
(9) Ambros, R.; von Angerer, S.; Wiegrebe, W. Arch. Pharm. (Weinheim,
Ger.) 1988, 321, 743-747.
(1) Ewing, J.; Hughes, G. K.; Ritchie, E.; Taylor, W. C. Nature 1952,
169, 618-619; Aust J. Chem. 1953, 6, 78-85.
(2) For a review, see: Eliott, I. W. In The Alkaloids; Brossi, A. Ed.;
Academic Press: Orlando, 1987; Vol. 31, pp 101-116.
10.1021/ol005802d CCC: $19.00 © 2000 American Chemical Society
Published on Web 06/03/2000