16
K. M. Joseph, I. Larraza-Sanchez / Tetrahedron Letters 52 (2011) 13–16
improvement when the reaction was started at room temperature
and then heated at 40 °C. Similarly, in an effort to evaluate the ef-
fect of the solvent and the temperature on HBA’s stability, we pre-
pared several solutions in acetonitrile with the same concentration
used in our protocol and monitored them over a period of 3 h at
different temperatures (room temperature to 52 °C). As expected,
we did not observe any decomposition of HBA by 13C NMR or IR
spectroscopy and recovered quantitative amounts of HBA once
the solvent was removed.
In conclusion, we have developed a highly reproducible proto-
col for the preparation of benzyl bromides from alcohols. The pres-
ent process can be applied to a wide range of starting materials,
aromatic and heteroaromatic, with high conversion rates and short
reaction times. Likewise, it can be considered as a mild alternative
to the synthesis of drug intermediates that have a benzyl unit in
their structure.
from the Center for Academic Innovation and the Department of
Chemistry and Physics at Saint Mary’s College, Notre Dame, IN.
References and notes
1. (a) Laven, G.; Kalek, M.; Jezowska, M. New J. Chem. 2010, 34, 967–975; (b)
Sharghi, H.; Khalifeh, R.; Doroodmand, M. M. Adv. Synth. Catal. 2009, 351, 207–
218; (c) Kamal, A.; Chouhan, G. Tetrahedron Lett. 2005, 46, 1489–1491.
2. (a) Kshirsagar, S. W.; Patil, N. R.; Samant, S. D. Res. J. Pharm. Biol. Chem. Sci. 2010,
1, 48–51; (b) Heidarizadeh, F.; Asareh, H. Asian J. Chem. 2009, 21, 949–952; (c)
Liu, Q.; Lu, M.; Sun, F.; Li, J.; Zhao, Y. Synth. Commun. 2008, 38, 4188–4197.
3. Scialdone, O.; Galia, A.; Silvestri, G.; Amatore, C.; Thouin, L.; Verpeaux, J. N.
Chem. Eur. J. 2006, 12, 7433–7447.
4. (a) Troisi, L.; Granito, C.; Rosato, F.; Videtta, V. Tetrahedron Lett. 2010, 51, 371–
373; (b) Troisi, L.; Pindinelli, E.; Strusi, V.; Trinchera, P. Tetrahedron: Asymmetry
2009, 20, 368–374.
5. Barnett, D. W.; Panigot, M. J.; Curley, R. W. Tetrahedron: Asymmetry 2002, 13,
1893–1900.
6. (a) El Kaim, L.; Grimaud, L.; Schiltz, A. Tetrahedron Lett. 2009, 50, 5235–5237;
(b) Shargi, H.; Khalifeh, R.; Doroodmand, M. M. Adv. Synth. Catal. 2009, 351,
207–218.
7. For examples of cross-coupling with alkynes see: (a) Xiao, Q.; Ma, J.; Yang, Y.;
Zhang, Y.; Wang, J. Org. Lett. 2009, 11, 4732–4735; (b) Davies, K. A.; Abel, R. C.;
Wulff, J. E. J. Org. Chem. 2009, 74, 3997–4000; For examples of Suzuki–Miyaura
couplingssee:(c)Fairlamb, I. J.S.;Sehnal, P.;Taylor, R.J.K.Synthesis2009, 508–510;
(d) Ines, B.; Moreno, I.; SanMartin, R.; Dominguez, E. J. Org. Chem. 2008, 73, 8448–
8451; For an example, of Negishi coupling see: (e) Bedford, R. B.; Huwe, M.;
Wilkinson, M. C. Chem. Commun. 2009, 600–602; For palladium-catalyzed
intramolecularcyclizationssee:(f)Liu,Z.;Shi, C.; Chen, Y.Synlett2008, 1734–1736.
8. Yan, R. Z.; Liu, X. Y.; Xu, W. F.; Pannecouque, C.; Witvrouw, M.; De Clercq, E.
Arch. Pharmacol. Res. 2006, 29, 957–962.
9. (a) Godefroi, E. F.; Van Cutsem, J.; Van der Eycken, C. A. M.; Janssen, P. A. J. J.
Med. Chem. 1969, 12, 784; (b) Walker, K.A.M.; Marx, M. U.S. Patent 4038,409,
1976.
10. Zarghi, A.; Faizi, M.; Shafaghi, B.; Ahadian, A.; Khojastehpoor, H. R.; Zanganeh,
V.; Tabatabai, S. A.; Shafiee, A. Bioorg. Med. Chem. Lett. 2005, 15, 3126–3129.
11. For an excellent, comprehensive source of information about drug synthesis,
see: Lednicer, D. Strategies for Organic Drug Synthesis and Design, 2nd ed.; John
Wiley & Sons: New Jersey, 2009.
12. Munbunjong, W.; Lee, E. H.; Chavasiri, W.; Jang, D. O. Tetrahedron Lett. 2005, 46,
8769–8771.
13. For the preparation of 4-benzylpyridines using manganese reagents and mild
conditions see: Suh, Y. S.; Lee, J.; Kim, S. H.; Rieke, R. D. J. Organomet. Chem.
2003, 684, 20–36.
14. (a) Gilbert, E. E. Tetrahedron 1969, 1801–1806; (b) Tongkate, P.; Pluempanupat,
W.; Chavasiri, W. Tetrahedron Lett. 2008, 49, 1146–1148; For the synthesis of
amides using acyl bromides prepared with HBA as intermediates see: (c)
Menezes, F. G.; Kolling, R.; Bortoluzzi, A. J.; Gallardo, H.; Zucco, C. Tetrahedron
Lett. 2009, 50, 2559–2561; (d) Sigma–Aldrich, catalog number 70, 2404.
15. (a) Meyers, C. Y.; Hou, Y.; Lutfi, H. G.; Saft, H. L. J. Org. Chem. 1999, 64, 9444–
9449; (b) Deno, N. C.; Potter, N. H. J. Am. Chem. Soc. 1967, 89, 3555–3556; (c)
Wagner, A.; Heitz, M. P.; Mioskowski, C. Tetrahedron Lett. 1990, 31, 3141–3144;
(d) Schaefer, J. P.; Higgins, J. J. J. Org. Chem. 1967, 32, 1607–1608.
16. Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine,
H. P.; Knight, C.; Nagy, M. A.; Perry, D. A.; Stefaniak, M. Green Chem. 2008, 10,
31–36.
3. General procedure for the synthesis of benzyl bromides
A
mixture of alcohol (1.2 mmol) and triphenylphosphine
(1.8 mmol) was stirred in dry acetonitrile (6 mL) for 15 min. Hex-
abromoacetone (0.6 mmol) was added and the stirring continued
at 40° under a nitrogen atmosphere. Conversion of the alcohol into
the bromide was followed by 1H NMR analysis on a sample previ-
ously quenched with cold water.
4. Synthesis of omeprazole’s precursor 6
A solution of 4-methoxy-3,5-dimethyl-2-pyridinemethyl bro-
mide (1.2 mmol) in CH3CN (6 mL) was prepared according the
above procedure and added to a suspension of 2-mercapto-5-meth-
oxybenzimidazole (1.2 mmol) in CH3CN (2 mL). The mixture was
stirred for 30 min at room temperature, under a N2 atmosphere, fol-
lowed by addition of 30% NaOH (0.32 mL, 2.4 mmol) and the stirring
was continued for an additional 30 min. The reaction was quenched
with water, the CH3CN removed under reduced pressure and the
residue was extracted with 1 M HCl (3 ꢀ 30 mL). The latter was then
treated with 1 M NaOH (pH ꢁ11) and extracted with CH2Cl2. The
organic phase was washed with brine and dried over anhydrous
Na2SO4. After evaporation the residue was purified with a plug of
neutral alumina using hexane/EtOAc 1:4 to give omeprazole’s
precursor 6 (85%): IR (film) mmax 3375, 3057, 2951, 1628, 1591,
1568, 1475, 1452, 1435, 1271, 1155, 1078 cmꢂ1.1H NMR (CDCl3)
d (ppm) 2.26 (s, 3H), 2.30 (s, 3H), 3.76 (s, 3H), 3.82 (s, 3H), 4.38
(s, 2H), 6.72 (d, J = 2.8 Hz, 1H), 6.95 (dd, J = 2.5 Hz, J = 7.3 Hz, 1H),
7.39 (d, J = 7.5 Hz, 1H), 8.25 (s, 1H), 10.25 (br, 1H).
17. A recent study found that liquid ammonia behaved like a dipolar aprotic
solvent in nucleophilic substitutions with a bimolecular SN2 mechanism. Their
Hammet
r-values show a similar trend: Ji, P.-J.; Atherton, J. H.; Page, M. I.
Faraday Discuss. 2010, 145, 15–25.
18. (a) Appel, R.; Halstenberg, M. In Organophosphorus Reagents in Organic
Synthesis; Cadogan, J. I. G., Ed.; Academic Press: London, 1979; (b) Slagle, J.
D.; Huang, T. T. S.; Franzus, B. J. Org. Chem. 1981, 46, 2526–2530.
19. For a related synthesis of omeprazole analogues see: Vidaillac, C.; Guillon, J.;
Arpin, I.; Forfar-Bares, I.; Ba, B. B.; Grellet, J.; Moreau, S.; Caignard, D. H.; Jarry,
C.; Quentin, C. Antimicrob. Agents Chemother. 2007, 831–838.
20. Mehner, A.; Montero, A. L.; Martinez, R.; Spange, S. Molecules 2007, 12, 634–
640.
Acknowledgements
This project was funded by the Maryjeanne R. Burke and
Daughters SISTAR Grant from Saint Mary’s College and by the
Van Smith family. We are also grateful for the support received