specific synthesis of imidazoline-based amino acids has not
been reported from dipeptides composed of a C-terminal
â-amino-R-amino acid residue or N-acylated â-amino-R-
amino acids. Furthermore, there are very few reports of the
synthesis of imidazole-based amino acids.10
Recently, we reported biomimetic methodology for the
synthesis of thiazolines from N-acylated cysteine sub-
structures using bis(triphenyl) oxodiphosphonium trifluoro-
methanesulfonate (Scheme 1, X ) STrt (trityl), Y ) S).11a
mercially available N-R-Fmoc-N-â-4-methyltrityl-l-diamino-
propionic acid or L-serine methyl (or benzyl) ester.12 To
examine the scope and limitations of imidazoline formation
by the bisphosphonium salt, â-tosylamino-R-acylamino esters
(1a-6a) were subjected to the reaction conditions shown in
Table 1. In general, this reaction afforded imidazoline
Table 1. Bis-phosphonium Salt-Mediated Synthesis of
Imidazolines from â-Tosylamino-R-acylamino Esters
Scheme 1. Heterocycle Formation Mediated by Bis(triphenyl)
Oxodiphosphonium Trifluoromethanesulfonate
entry
substrates, R
products
yield (%)a
ee (%)b
1
1a , Ph
2a , Ph
3a , 4-Me-Ph
4a , 4-MeO-Ph
5a , Bn
1b
2b
3b
4b
5b
6b
96
95
97
95
94
90
97
98
98
97
99
86
2c
Thiazolines are formed by nucleophilic attack of the
cysteine thiol on the phosphonium-activated amide carbonyl
group of the preceding residue, followed by dehydration via
phosphine oxide formation. The reaction proceeds in high
yield with excellent chemo- and enantiospecificity, without
epimerization of the exocyclic stereocenter. Herein, we report
a highly efficient enantiospecific synthesis of imidazoline-
based amino acids using bis(triphenyl) oxodiphosphonium
trifluoromethanesulfonate (Scheme 1, X ) NHTs, Y ) NTs).
The imidazole-based amino acids comprising the macro-
lactam natural product analogues prepared within are ob-
tained by oxidizing the corresponding imidazolines.
3
4
5
6d
6a , 3-CF3-Ph
a Isolated yield. b Determined by chiral HPLC. c R configuration substrate
was used. d Starting material exhibited 96% ee.
products in high yields with excellent retention of stereo-
chemistry at what was the R-carbon. A decreased enantio-
meric excess (86%) was observed only with the 3-CF3-
phenyl-substituted substrate (Table 1, entry 6).
To apply this method to the synthesis of imidazoline-based
amino acids, several R-N-protected dipeptides with tosyl
protected â-amino groups were synthesized and evaluated
as starting materials (7a-13a, Table 2).
The starting materials for imidazoline formation, N-
acylated â-amino-R-amino esters (1a-6a), and fully pro-
tected dipeptides composed of a C-terminal â-amino-R-amino
ester residue (7a-13a), were synthesized either from com-
(6) (a) Carmeli, S.; Moore, R. E.; Patterson, G. M. L.; Corbett, T. H.;
Valeriote, F. A. J. Am. Chem. Soc. 1990, 112, 8195. (b) Carmeli, S.; Moore,
R. E.; Patterson, G. M. L. Tetrahedron Lett. 1991, 32, 2593. (c) Boyce, R.
J.; Mulqueen, G. C.; Pattenden, G. Tetrahedron 1995, 51, 7321. (d) Ogino,
J.; Moore, R. E.; Patterson, G M. L.; Smith, C. D. J. Nat. Prod. 1996, 59,
581. (e) Admi, V.; Afek, U.; Carmeli, S. J. Nat. Prod. 1996, 59, 396. (f)
Banker, R.; Carmeli, S. J. Nat. Prod. 1998, 61, 1248. (g) Ishida, K.;
Nakagawa, H.; Murakami, M. J. Nat. Prod. 2000, 63, 1315. (h) Rudi, A.;
Chill, L.; Aknin, M.; Kashman, Y. J. Nat. Prod. 2003, 66, 575. (i) Degnan,
B. M.; Hawkins, C. J.; lavin, M. F.; McCaffrey, E. J.; Parry, D. L.; Watters,
D. J. J. Med. Chem. 1989, 32, 1354. (j) Foster, M. P.; Concepcio´n, G. P.;
Caraan, G. B.; Ireland, C. M. J. Org. Chem. 1992, 57, 6671. (k) Perez, L.
J.; Faulkner, D. J. J. Nat. Prod. 2003, 66, 247. (l) For reviews, see:
Davidson, B. S. Chem. ReV. 1993, 93, 1771. Wipf, P. Chem. ReV. 1995,
95, 2115.
(7) (a) Mitchell, J. M.; Finney, N. S. Tetrahedron Lett. 2000, 41, 8431.
(b) Sutcliffe, O. B.; Bryce, M. R.; Batsanov, A. S. J. Organomet. Chem.
2002, 656, 211.
(8) Boland, N. A.; Casey, M.; Hynes, S. J.; Matthews, J. W.; Smyth, M.
P. J. Org. Chem. 2002, 67, 3919.
(9) (a) Hunter, D. H.; Sim, S. K. Can. J. Chem. 1972, 50, 669. (b) Oi,
R.; Sharpless, K. B. Tetrahedron Lett. 1991, 32, 999. (c) Molina, P.; D´ıaz,
I.; Ta´rraga, A. Synett 1995, 1031. (d) Hulme, C.; Ma, L.; Romano, J.;
Morrissette, M. Tetrahedron Lett. 1999, 40, 7925. (e) Zhou, X.-T.; Lin Y.-
R.; Dai, L.-X.; Sun, J.; Xia, L.-J.; Tang, M.-H. J. Org. Chem. 1999, 64,
1331. (f) Acharya, A. N.; Ostresh, J. M.; Houghten, R. A. J. Org. Chem.
2001, 66, 8673. (g) Peddibhotla, S.; Tepe, J. J. Synthesis 2003, 1433.
(10) (a) Haberhauer, G.; Rominger, F. Tetrahedron Lett. 2002, 43, 6335.
(b) Haberhauer, G.; Rominger, F. Eur. J. Org. Chem. 2003, 3209.
(11) (a) You, S.-L.; Razavi, H.; Kelly, J. W. Angew. Chem., Int. Ed.
2003, 42, 83. (b) You, S.-L.; Kelly, J. W. Chem. Eur. J. 2004, 10, 71. (c)
You, S.-L.; Kelly, J. W. J. Org. Chem. 2003, 68, 9506.
Table 2. Bis-phosphonium Salt-Mediated Synthesis of
Imidazoline-Based Amino Acids from Dipeptides
R (configuration),
yield
ee
(%)c
entry
PG
R′
product (%)a
drb
1
2
3
4
5
6
7
7a , Cbz
Bn (L), Me
Bn (D), Me
i-Pr (L), Me
i-Pr (D), Me
i-Pr (L), Bn
i-Pr (D), Bn
i-Pr (L), Bn
7b
71
75
74
81
74
76
88
>99/1
>99/1
99
98
8a , Cbz
8b
9a , Cbz
9b
>99/1 >99.5
>99/1 99
>99/1 >99.5
>99/1 99
>99/1 >99.5
10a , Cbz
11a , Cbz
12a , Cbz
13a , Fmoc
10b
11b
12b
13b
a Isolated yield. b Determined by NMR and chiral HPLC. c Determined
by chiral HPLC.
In all cases, the corresponding imidazolines were obtained
in moderate to very good yields with excellent enantio-
selectivity observed at both chiral centers. Several imid-
1682
Org. Lett., Vol. 6, No. 10, 2004