1720 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 6
Letters
(14) Sun, L.; Tran, N.; Liang, C.; Tang, F.; Rice, A.; Schreck, R.;
Waltz, K.; Shawver, L. K.; McMahon, G.; Tang, C. Design,
synthesis, and evaluations of substituted 3-[(3- or 4-carboxyeth-
ylpyrrol-2-yl)methylidenyl]indolin-2-ones as inhibitors of VEGF,
FGF, and PDGF receptor tyrosine kinases. J. Med. Chem. 1999,
42, 5120-5130. Sun, L.; Tran, N.; Liang, C,; Hubbard, S.; Tang,
F.; Lipson, K.; Schreck, R.; Zhou, Y.; McMahon, G.; Tang, C.
Identification of substituted 3-[(4,5,6,7-tetrahydro-1H-indol-2-
yl)methylene]-1,3-dihydroindol-2-ones as growth factor receptor
inhibitors for VEGF-R2 (Flk-1/KDR), FGF-R1, and PDGF-Râ
tyrosine kinases. J. Med. Chem. 2000, 43, 2655-2663.
(15) Bold, G.; Altmann, K. H.; Frei, J.; Lang, M.; Manley, P. W.;
Traxler, P.; Wietfeld, B.; Bruggen, J.; Buchdunger, E.; Cozens,
R.; Ferrari, S.; Furet, P.; Hofmann, F.; Martiny-Baron, G.;
Mestan, J.; Rosel, J.; Sills, M.; Stover, D.; Acemoglu, F.; Boss,
E.; Emmenegger, R.; Lasser, L.; Masso, E.; Roth, R.; Schlachter,
C.; Vetterli, W. New anilinophthalazines as potent and orally
well absorbed inhibitors of the VEGF receptor tyrosine kinases
useful as antagonists of tumor-driven angiogenesis. J. Med.
Chem. 2000, 43, 2310-2323.
response can be blocked by neutralizing antibody against
VEGF,27 underscoring the importance of VEGF signal-
ing in this assay system. We found that compound 14d
blocked vascular sprout formation by 83% and 27% at
3 and 0.3 µM, respectively (Table 3 and Figure 1). The
approximate IC50 for compound 14d in the aortic ring
explant assay (1 µM) is somewhat higher than the IC50
for blocking HUVEC proliferation (0.28 µM). This may
reflect potential species differences in compound potency
or compound binding to collagen gels.
In summary, we have described a novel series of
2-hydroxy-4,6-diamino-[1,3,5]triazines, which are potent
inhibitors of KDR kinase, and which have comparable
selectivities to other reported small molecule inhibitors
in preclinical development.
(16) Fraley, M. E.; Arrington, K. L.; Buser, C. A.; Ciecko, P. A.; Coll,
K. E.; Fernandes, C.; Hartman, G. D.; Hoffman, W. F.; Lynch,
J. J.; McFall, R. C.; Rickert, K.; Singh, R.; Smith, S.; Thomas,
K. A.; Wong, B. K. Optimization of the indolyl quinolinone class
of KDR kinase inhibitors: effects of 5-amido- and 5-sulfonamido-
indolyl groups on pharmacokinetics and hERG binding. Bioorg.
Med. Chem. Lett. 2004, 14, 351-355.
Supporting Information Available: Experimental pro-
cedures and spectra for the research described in this letter.
This material is available free of charge via the Internet at
(17) Wu, Z.; Fraley, M. E.; Bilodeau, M. T.; Kaufman, M. L.; Tasber,
E. S.; Balitza, A. E.; Hartman, G. D.; Coll, K. E.; Rickert, K.;
Shipman, J.; Shi, B.; Sepp-Lorenzino, L.; Thomas, K. A. Design
and synthesis of 3,7-diarylimidazopyridines as inhibitors of the
VEGF-receptor KDR. Bioorg. Med. Chem. Lett. 2004, 14, 909-
912.
(18) Bilodeau, M. T.; Cunningham, A. M.; Koester, T. J.; Ciecko, P.
A.; Coll, K. E.; Huckle, W. R.; Hungate, R. W.; Kendall, R. L.;
McFall, R. C.; Mao, X.; Rutledge, R. Z.; Thomas, K. A. The
discovery of N-(1,3-thiazol-2-yl)pyridin-2-amines as potent in-
hibitors of KDR kinase. Bioorg. Med. Chem. Lett. 2003, 13,
2485-2488.
(19) Bilodeau, M. T.; Rodman, L. D.; McGaughey, G. B.; Coll, K. E.;
Koester, T. J.; Hoffman, W. F.; Hungate, R. W.; Kendall, R. L.;
McFall, R. C.; Rickert, K. W.; Rutledge, R. Z.; Thomas, K. A.
The discovery of N-(1,3-thiazol-2-yl)pyridin-2-amines as potent
inhibitors of KDR kinase. Bioorg. Med. Chem. Lett. 2004, 14,
2941-2945.
(20) Hennequin, L. F.; Thomas, A. P.; Johnstone, C.; Stokes, E. S.;
Pl_, P. A.; Lohmann, J. J.; Ogilvie, D. J.; Dukes, M.; Wedge, S.
R.; Curwen, J. O.; Kendrew, J.; Lambert-van der Brempt, C.
Design and structure-activity relationship of a new class of
potent VEGF receptor tyrosine kinase inhibitors. J. Med. Chem.
1999, 42, 5369-5389. Hennequin, L. F.; Stokes, E. S.; Thomas,
A. P.; Johnstone, C.; Ple´, P. A.; Ogilvie, D. J.; Dukes, M.; Wedge,
S. R.; Kendrew, J.; Curwen, J. O. Novel 4-anilinoquinazolines
with C-7 basic side chains: design and structure activity
relationship of a series of potent, orally active, VEGF receptor
tyrosine kinase inhibitors. J. Med. Chem. 2002, 45, 1300-1312.
(21) Hadjuk, P. J.; Dinges, J.; Schkeryantz, J. M.; Janowick, D.;
Kaminski, M.; Tufano, M.; Augeri, D. J.; Petros, A.; Nienaber,
V.; Zhong, P.; Hammond, R.; Coen, M.; Beutel, B.; Katz, L.;
Fesik, S. W. Novel Inhibitors of Erm Methyltransferases from
NMR and Parallel Synthesis. J. Med. Chem. 1999, 42, 3852-
3859.
References
(1) Carmeliet, P.; Jain, R. K. Angiogenesis in cancer and other
diseases. Nature 2000, 401, 249-257. Ferrara, N. VEGF and
the quest for tumour angiogenesis factors. Nat. Rev. Cancer
2002, 2, 795-803. Manley, P. W.; Martiny-Baron, G.; Schlaeppi,
J. M.; Wood, J. M. Therapies directed at vascular endothelial
growth factor. Expert Opin. Invest. Drugs 2002, 11, 1715-1736.
(2) McDonnell, C. O.; Hill, D. A.; McNamara, D. A.; Walsh, T. N.;
Bouchler-Hayes, D. J. Tumor micrometastases: the influence
of angiogenesis. Eur. J. Surg. Oncol. 2000, 26, 105-115.
(3) Patel, N.; Sun, L.; Moshinsky, D.; Chen, H.; Leahy, K. M.; Le,
P.; Moss, K. G.; Wang, X.; Rice, A.; Tam, D.; Laird, A. D.; Yu,
X.; Zhang, Q.; Tang, C.; McMahon, G.; Howlett, A. A selective
and oral small molecule inhibitor of vascular epithelial growth
factor receptor (VEGFR)-2 and (VEGFR)-1 inhibits neovascu-
larization and vascular permeability. J. Pharmacol. Exp. Ther.
2003, 306, 838-845.
(4) Enomoto, H.; Inoki, I.; Komiya, K.; Shiomi, T.; Ikeda, E.; Obata,
K.; Matsumoto, H.; Toyama, Y.; Okada, Y. Vascular endothelial
growth factor isoforms and their receptors are expressed in
human osteoarthritic cartilage. Am. J. Pathol. 2003, 162, 171.
(5) Clavel, G.; Bessis, N.; Boissier, M. C. Recent data on the role of
angiogenesis in rheumatoid arthritis. Joint Bone Spine 2003,
70, 321-326.
(6) Tonnesen, M. G.; Feng, X.; Clark, R. A. Angiogenesis in wound
healing. J. Invest. Dermatol. Symp. Proc. 2000, 5, 40-46.
(7) Zhou, Y.; Genbacev, O.; Fisher, S. J. The human placenta
remodels the uterus by using a combination of molecules that
govern vasculogenesis or leukocyte extravasation. Ann. N.Y.
Acad. Sci. 2003, 995, 73-83.
(8) Reynolds, L. P.; Grazul-Bilska, A. T.; Redmer, D. A. Angiogenesis
in the female reproductive organs: pathological implications. Int.
J. Exp. Pathol. 2002, 83, 151-163.
(9) Kim, K. J.; Li, B.; Winer, J.; Armanini, M.; Gillett, N.; Phillips,
H. S.; Ferrara, N. Inhibition of vascular endothelial growth
factor-induced angiogenesis suppresses tumour growth in vivo.
Nature 1993, 362, 841-844.
(10) Ferrara, N.; Gerber, H. P. The role of vascular endothelial growth
factor in angiogenesis. Acta Haematol. 2001, 106, 148-156.
(11) Kabbinavar, F.; Hurwitz, H. I.; Fehrenbacher, L.; Meropol, N.
J.; Novotny, W. F.; Lieberman, G.; Griffing, S.; Bergsland, E.
Phase II, randomized trial comparing bevacizumab plus fluo-
rouracil (FU)/leucovorin (LV) with FU/LV alone in patients with
metastatic colorectal cancer. J. Clin. Oncol. 2003, 21, 60-65.
Yang, J. C.; Haworth, L.; Sherry, R. M.; Hwu, P.; Schwartzen-
truber, D. J.; Topalian, S. L.; Steinberg, S. M.; Chen, H. X.;
Rosenberg, S. A. A randomized trial of bevacizumab, an anti-
vascular endothelial growth factor antibody, for metastatic renal
cancer. New Engl. J. Med. 2003, 349, 427-434.
(12) Prewett, M.; Huber, J.; Li, Y.; Santiago, A.; O’Connor, W.; King,
K.; Overholser, J.; Hooper, A.; Pytowski, B.; Witte, L.; Bohlen,
P.; Hicklin, D. J. Antivascular endothelial growth factor receptor
(fetal liver kinase 1) monoclonal antibody inhibits tumor angio-
genesis and growth of several mouse and human tumors. Cancer
Res. 1999, 59, 5209-5218.
(13) For a review of KDR inhibitors, see: Boyer, S. J. Small molecule
inhibitors of KDR (VEGFR-2) kinase: an overview of structure
activity relationships. Curr. Top. Med. Chem. 2002, 2, 973-1000.
(22) Xia, Y.; Mirzai, B.; Chackalamannil, S.; Czarniecki, M.; Wang,
S.; Clemmons, A.; Ahn, H.-S.; Boykow, G. C. Substituted 1,3,5-
Triazines as Cholesterol Ester Transfer Protein Inhibitors.
Bioorg. Med. Chem. Lett. 1996, 6, 919-922.
(23) See Supporting Information (IR spectra 3) and the following:
Socrates, G. Infrared Characteristic Group Frequencies; George
Wiley and Sons: New York, 1994; pp 136-137.
(24) Data not shown.
(25) Thurston, G. Role of Angiopoietins and Tie receptor tyrosine
kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res.
2003, 314, 61-8.
(26) Versteeg, H. H.; Nijhuis, E.; van der Brink, G. R.; Evertzen, M.;
Pynaert, G. N.; van Deventer, S. J. H.; Coffer, P. J.; Peppelen-
bosch, M. P. A new phosphospecific cell-based ELISA for the p42/
44 mitogen-activated (MAPK), p38 MAPK and protein kinase
B and cAMP-response-element binding protein. Biochem. J.
2000, 350, 717-722.
(27) Nicosia, R. F.; Lin, Y. J.; Hazelton, D.; Qian, X. Endogenous
regulation of angiogenesis in the rat aorta model. Role of
vascular endothelial growth factor. Am. J. Pathol. 1997, 151,
1379-1386.
JM049372Z