118
SHUTILOV et al.
7. Nicolov, V., Klissurski, D., and Anastasov, A., Catal.
Rev. Sci. Eng., 1991, vol. 31, nos. 3–4, p. 319.
considerable part of anatase in undoped TiO2 turns
into rutile starting at 750 C.
°
8. Al’kaeva, E.M., Andrushkevich, T.V., Zenkovets, G.A.,
The formation of the porous structure in the binary
system is also determined by the increase in the phase
transition temperature as a function of the xerogel
composition. Note that the decrease in the total pore
volume with an increase in the percentage of yttrium
oxide is likely due to the dopant occupying pores in the
TiO2 matrix. The thermal stability of the resulting
binary structure is confirmed by the finding that the
pore volume in the samples containing 1 and 2 mol %
Y2O3 does not change as the heat treatment temperaꢀ
Kryukova, G.N., and Tsybulya, S.V., Catal. Today
2000, vol. 61, nos. 1–4, p. 249.
,
9. Park, N.ꢀG., van de Lagemaat, J., and Frank, A.J.,
J. Phys. Chem. B, 2000, vol. 104, no. 38, p. 8989.
10. Garzella, C., Comini, E., Tempesti, E., Frigari, C., and
Sberveglieri, G., Sens. Actuators, B, 2000, vol. 68,
p. 189.
11. Kholmanov, I.N., Barborini, E., Vinati, S., Piseri, P.,
Podesta, A., Ducati, C., Lenardi, C., and Milani, P.,
Nanotecnology, 2003, vol. 14, p. 1168.
ture is raised to 700°C.
The observation that increasing the amount of
dopant at a fixed heat treatment temperature imparts a
finer porous texture to the binary system is explained
by the fact that the smaller titanium dioxide particles
survive at higher Y2O3 contents. Accordingly, the
mesopore space results from the packing of smaller
particles, for which a smaller dominant pore size is
typical. The fine porous texture with a pore diameter
12. Zhang, H. and Banfield, J.F., J. Mater. Chem., 1998,
vol. 8, no. 9, p. 2073.
13. Kumar, K.P., Scr. Metall. Mater., 1995, vol. 32, p. 873.
14. Kim, H.G. and Kim, K.T., Acta Mater., 1999, vol. 47,
p. 3561.
15. Fu, Y., Gao, W., Xia, T., Zhou, L., and Tian, Y., Gongꢀ
neng Cailiao (Chinese), 2005, vol. 36, no. 2, p. 250.
16. Zenkovets, G.A., Tsybulya, S.V., Burgina, E.B., and
Kryukova, G.N., Kinet. Katal., 1999, vol. 40, no. 4,
p. 623 [Kinet. Catal. (Engl. Transl.), vol. 40, no. 4,
p. 562].
of Dpore ≈ 4.7 nm is stable up to 400°C. Thus, the dopꢀ
ing of titanium dioxide with yttrium oxide using the
procedure suggested here makes it possible to markꢀ
edly enhance the thermal stability of anatase and to
form a heatꢀresistant fine porous texture at fairly high
calcination temperatures.
17. Zenkovets, G.A., Shutilov, A.A., Gavrilov, V.Yu.,
Tsybulya, S.V., and Kryukova, G.N., Kinet. Katal.
,
2007, vol. 48, no. 5, p. 792 [Kinet. Catal. (Engl. Transl.),
vol. 48, no. 5, p. 742].
ACKNOWLEDGMENTS
18. Zenkovets, G.A., Shutilov, A.A., Gavrilov, V.Yu., and
Tsybulya, S.V., Kinet. Katal., 2009, vol. 50, no. 5, p. 790
The authors are grateful to A.V. Ishchenko for carꢀ
rying out electron microscopic studies.
[Kinet. Catal. (Engl. Transl.), vol. 50, no. 5, p. 760].
19. He, X., Chen, R., Zheng, X., and Chen, Z., Semicond.
Photon. Technol., 2005, vol. 11, no. 3, p. 192.
This work was supported by the Siberian Branch of
the Russian Academy of Sciences (interdisciplinary
project no. 36) and the Ministry of Education and Sciꢀ
ence of the Russian Federation through state contract
no. P252/23.07.2009 and through the program “Develꢀ
opment of the Scientific Potential of the Higher Educaꢀ
tion Institutions” (project no. 2.1.1/729).
20. Elaloui, E, Begas, R, Pommier, B, and Pajonk, G.M,
Stud. Surf. Sci. Catal., 2002, vol. 143, p. 331.
21. Dobrovol’skii, I.P., Khimiya i tekhnologiya oksidnykh
soedinenii titana (Titanium Oxides: Chemistry and
Technology), Sverdlovsk: Ural. Otd. Akad. Nauk
SSSR, 1988.
22. Guinier, A., Théorie et technique de la radiocristallograꢀ
phie, Paris: Dunot, 1956.
REFERENCES
1. Vedrine, J.C., Catal. Today, 1994, vol. 20, no. 1, p. 171. 23. Tsybulya, S.V., Cherepanova, S.V., and Solov’eva, L.P.,
Zh. Strukt. Khim., 1996, vol. 37, no. 2, p. 379.
2. Alexeev, O.S., Chin, S.Y., Engelhard, M.H., Ortizꢀ
Soto, L., and Amiridis, M.D., J. Phys. Chem. B, 2005,
vol. 109, no. 49, p. 23 430.
24. Barret, E.P., Joyner, L.G., and Hallenda, P.H., J. Am.
Chem. Soc., 1951, vol. 73, no. 1, p. 373.
3. Shutilov, A.A., Zenkovets, G.A., Kryukova, G.N.,
Gavrilov, V.Yu., Paukshtis, E.A., Boronin, A.I., Koꢀ
shcheev, S.V., and Tsybulya, S.V., Kinet. Katal., 2008,
vol. 49, no. 2, p. 284 [Kinet. Catal. (Engl. Transl.),
vol. 49, no. 2, p. 271].
4. Kryukova, G.N., Zenkovets, G.A., Shutilov, A.A.,
Wilde, M., Gunter, K., Fassler, D., and Richter, K.,
Appl. Catal., B, 2007, vol. 71, no. 3, p. 169.
25. Powder Diffraction File no. 42ꢀ0413.
26. Kataliticheskie svoistva veshchestv: Spravochnik (Cataꢀ
luytic Properties of Substnces: A Handbook), Roiter, V.A.,
Ed., Kiev: Naukova Dumka, 1968.
27. Karnaukhov, A.P., Adsorbtsiya: Tekstura dispersnykh i
poristykh materialov (Adsorption: Texture of Disperse
and Porous Materials), Novosibirsk: Nauka, 1999.
28. Zenkovets, G.A., Gavrilov, V.Yu., Kryukova, G.N., and
5. Vorontsov, A.V., Savinov, E.N., Barannik, G.D.,
Troitsky, V.N., and Parmon, V.N., Catal. Today, 1997,
vol. 38, no. 5, p. 732.
Tsybulya, S.V., Kinet. Katal., 1998, vol. 39, no. 1, p. 122
[Kinet. Catal. (Engl. Transl.), vol. 39, no. 1, p. 114].
6. Photocatalysis: Fundamentals and Applications, Serꢀ 29. Fenelonov, V.B., Tarasova, D.V., and Gavrilov, V.Yu.,
pone, N. and Pelizzetti, E., Eds., New York: Willey,
1989.
Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1978,
vol. 9, no. 4, p. 116.
KINETICS AND CATALYSIS Vol. 52
No. 1
2011