ORGANIC
LETTERS
2013
Vol. 15, No. 13
3334–3337
Manipulating the Diastereoselectivity of
Ortholithiation in Planar Chiral Ferrocenes
Simon A. Herbert,†,‡ Dominic C. Castell,† Jonathan Clayden,‡ and Gareth E. Arnott*,†
Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland,
7602, South Africa, and School of Chemistry, University of Manchester, Oxford Road,
Manchester M13 9PL, U.K.
Received May 16, 2013
ABSTRACT
The sense of asymmetric ortholithiation directed by a chiral oxazoline may be inverted simply by the choice of achiral ligand. Comparison of
results with a number of ferrocenyl oxazoline derivatives suggests that lithiation takes place by coordination to the oxazoline nitrogen irrespective
of the ligand used.
Ferrocenes have been extensively studied and are the
subject of much topical research, particularly since their
use in material1,2 and even medicinal chemistry3 has
been widespread. Significantly, the planar chiral aspect
of ferrocene substitution has been an important feature
of their success.4 Control of the absolute planar chiral
configuration of ferrocenyl systems has been achieved in
a number of ways, typically involving asymmetric lithia-
tion of the ferrocene through the use of chiral directing
groups.2a,5 One of the most common of these methods
has been the use of chiral oxazolines, first described in 1995
simultaneously by the groups of Richards,6 Uemura,7 and
Sammakia.8 This method involves the use of an alkyllithium
base directed by a chiral oxazoline to diastereoselectively
deprotonate one of the ferrocenyl ortho-protons. By quench-
ing the reaction with a wide range of electrophiles, diaste-
reomer 2a can be obtained, which can be further modified
downstream for a multitude of purposes, for example the
synthesis of the valuable ferrocenylphosphine (Fc-Phox)1a,9
and organosilanol10 ligands. Sammakia has developed
the method of choice, showing that sec-butyllithium in
conjunction with N,N,N0,N0-tetramethylethylenediamine
† University of Stellenbosch.
‡ University of Manchester.
(1) Selected review articles: (a) Sutcliffe, O. B.; Bryce, M. R. Tetra-
hedron: Asymmetry 2003, 14, 2297–2325. (b) Atkinson, R. C. J.; Gibson,
ꢀ
V. C.; Long, N. J. Chem. Soc. Rev. 2004, 33, 313–328. (c) Arrayas, R. G.;
Adrio, J.; Carretero, J. C. Angew. Chem., Int. Ed. 2006, 45, 7674–7715.
(d) Butler, I. R. Eur. J. Inorg. Chem. 2012, 4387–4406.
(2) Selected books: (a) Ferrocenes: Ligands, Materials and Biomole-
cules; Stepnicka, P., Ed.; Wiley: Chichester, 2008. (b) Chiral Ferrocenes in
Asymmetric Catalysis: Synthesis and Applications; Dai, L.-X., Hou, X. L.,
Eds.; Wiley-VCH: Weinheim, 2010. (c) Ferrocenes: Compounds, Proper-
ties & Applications (Chemical Engineering Methods and Technology);
Philips, E. S., Ed.; Nova Science Publishers: New York, 2011.
(3) Selected review articles: (a) Fouda, M. F. R.; Abd-Elzaher,
M. M.; Abdelsamaia, R. A.; Labib, A. A. Appl. Organomet. Chem.
2007, 21, 613–625. (b) Hillard, E. A.; Jaouen, G. Organometallics 2011,
30, 20–27. (c) Roux, C.; Biot, C. Future Med. Chem. 2012, 4, 783–797.
(4) Selected recent examples of planar chirality in ferrocenes: (a)
Metallinos, C.; John, J.; Zaifman, J.; Emberson, K. Adv. Synth. Catal.
2012, 354, 602–606. (b) Barreiro, E. M.; Broggini, D. F. D.; Adrio, L. A.;
White, A. J. P.; Schwenk, R.; Togni, A.; Hii, K. K. Organometallics
2012, 31, 3745–3754. (c) Buergler, J. F.; Niedermann, K.; Togni, A.
Chem.;Eur. J. 2012, 18, 632–640. (d) Zirakzadeh, A.; Schuecker, R.;
Gorgas, N.; Mereiter, K.; Spindler, F.; Weissensteiner, W. Organome-
tallics 2012, 31, 4241–4250. (e) Eitel, S. H.; Bauer, M.; Schweinfurth, D.;
(5) Clayden, J. Top. Organomet. Chem. 2003, 5, 251–286.
(6) (a) Richards, C. J.; Damalidis, T.; Hibbs, D. E.; Hursthouse,
M. B. Synlett 1995, 1995, 74–76. (b) Richards, C. J.; Mulvaney, A. W.
Tetrahedron: Asymmetry 1996, 7, 1419–1430.
(7) (a) Nishibayashi, Y.; Uemura, S. Synlett 1995, 79–81. (b)
Nishibayashia, Y.; Segawaa, K.; Arikawaa, Y.; Ohea, K.; Hidaib, M.;
Uemura, S. J. Organomet. Chem. 1997, 545ꢀ546, 381–398.
(8) (a) Sammakia, T.; Latham, H. A.; Schaad, D. R. J. Org. Chem.
1995, 60, 10–11. (b) Sammakia, T.; Latham, H. A. J. Org. Chem. 1995,
60, 6002–6003. (c) Sammakia, T.; Latham, H. A. J. Org. Chem. 1996, 61,
1629–1635.
(9) Geisler, F. M.; Helmchen, G. J. Org. Chem. 2006, 71, 2486–2492.
€
Deibel, N.; Sarkar, B.; Kelm, H.; Kruger, H.-J.; Frey, W.; Peters, R.
J. Am. Chem. Soc. 2012, 134, 4683–4693. (f) Gao, D.-W.; Shi, Y.-C.; Gu,
Q.; Zhao, Z.-L.; You, S.-L. J. Am. Chem. Soc. 2013, 135, 86–89.
€
(10) Ozc-ubukc-u, S.; Schmidt, F.; Bolm, C. Org. Lett. 2005, 7, 1407–
1409.
r
10.1021/ol4013734
Published on Web 06/25/2013
2013 American Chemical Society