Dalton Transactions
Paper
M. Metz, S.-K. Lee and A. E. Palmer, Angew. Chem., Int. Ed.,
2001, 40, 4570; (c) G. Henkel and B. Krebs, Chem. Rev.,
2004, 104, 801; (d) E. I. Solomon, R. K. Szilagyi, S. DeBeer
George and L. Basumallick, Chem. Rev., 2004, 104, 419;
(e) P. C. Ford, B. O. Fernandez and M. D. Lim, Chem. Rev.,
2005, 105, 2439; (f) M. L. Zastrow and V. L. Pecoraro, Coord.
Chem. Rev., 2013, 257, 2565.
Conclusions
The present study reports the synthesis and the characteriz-
ation of mononuclear Cu(II) complexes with bis(amino amide)
ligands (L1 and L2) and dinuclear Cu(II) complexes with tetra-
(amino amide) ligands (L3 and L4). The metal ion always dis-
plays the square planar coordination geometry, being
connected to four nitrogen atoms (two amines and two
deprotonated amides).
The complexes interact with hydroxy- and amino-dicarboxy-
late substrates, and this event provokes a strong change in the
visible absorption spectra. In particular, the interaction with
two biologically important dicarboxylates possessing very
similar structures (malate and aspartate) has a completely
different outcome. In the case of malate, a ternary complex
[ligand⋯metal⋯dicarboxylate] is formed almost quantitat-
ively; while in the case of aspartate, the anion is able to dis-
place Cu(II) from the ligand to form, mainly, the Cu(Asp)2
complex. These complexes are model compounds that mimic
the ligand exchange observed in natural systems and especially
the function of metal ionophores. In fact, ionophores are
specific ligands that bind a metal cation, transport it across a
cellular membrane, and then release it in response to different
stimuli (for example lower pH or presence of competitive
ligands).
3 (a) R. H. Holm, P. Kennepohl and E. I. Solomon, Chem.
Rev., 1996, 96, 2239; (b) J. T. Rubino and K. J. Franz,
J. Inorg. Biochem., 2012, 107, 129; (c) E. I. Solomon,
D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera,
M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard,
R. G. Hadt and L. Tian, Chem. Rev., 2014, 114, 3659.
4 (a) A. L. van den Brenk, D. P. Fairlie, G. R. Hanson,
L. R. Gahan, C. J. Hawkins and A. Jones, Inorg. Chem.,
1994, 33, 2280; (b) P. V. Bernhardt, P. Comba, D. P. Fairlie,
L. R. Gahan, G. R. Hanson and L. Lötzbeyer, Chem. – Eur.
J., 2002, 8, 1527; (c) P. Comba, L. R. Gahan, G. Haberhauer,
G. R. Hanson, C. J. Noble, B. Seibold and A. L. van den
Brenk, Chem. – Eur. J., 2008, 14, 4393; (d) P. Comba,
N. Dovalil, L. R. Gahan, G. Haberhauer, G. R. Hanson,
C. J. Noble, B. Seibold and P. Vadivelu, Chem. – Eur. J.,
2012, 18, 2578; (e) P. Comba, N. Dovalil, L. R. Gahan,
G. R. Hanson and M. Westphal, Dalton Trans., 2014, 43,
1935.
We are currently exploiting the modularity of the structure
of the pseudopeptidic ligands, that allow changes in the
spacer, the amino acid residue and the amine substituent, in
order to improve the solubility of the Cu(II) complexes in water
and tune their stability.
5 (a) M. Remelli, M. Peana, S. Medici, L. G. Delogu and
M. A. Zoroddu, Dalton Trans., 2013, 42, 5964; (b) S. C. Drew,
Chem. – Eur. J., 2015, 21, 7111.
6 (a) J. L. Hickey, P. J. Crouch, S. Mey, A. Caragounis,
J. M. White, A. R. White and P. S. Donnelly, Dalton Trans.,
2011, 40, 1338; (b) S. Tardito, I. Bassanetti, C. Bignardi,
L. Elviri, M. Tegoni, C. Mucchino, O. Bussolati, R. Franchi-
Gazzola and L. Marchiò, J. Am. Chem. Soc., 2011, 133, 6235;
(c) V. Oliveri, M. Viale, G. Caron, C. Aiello, R. Gangemi and
G. Vecchio, Dalton Trans., 2013, 42, 2023.
Acknowledgements
This work was supported by the Spanish Ministry of Economy
and Competitiveness (MINECO, CTQ2012-38543-C03-03 and
CTQ2012-36074) and Generalitat de Catalunya (2014 SGR 231).
This research was also supported by a Marie Curie Intra Euro-
pean Fellowship within the 7th European Community Frame-
work Programme (R. G.). E. F. thanks CSIC for the concession
of a JAE-Doc grant, a program co-funded by the European
Social Fund. We thank Daniel Heras, Mari Carmen Alcalá,
Miquel Sintes and Sandra Bassas for performing some
experiments.
7 (a) R. Österberg, Coord. Chem. Rev., 1974, 12, 309;
(b) V. Lillo and J. R. Galán-Mascarós, Dalton Trans., 2014,
43, 9821.
8 (a) B. Gyurcsik, T. Gajda, L. Nagy and K. Burger, J. Chem.
Soc., Dalton Trans., 1992, 2787; (b) T. Gajda, B. Henry,
A. Aubry and J.-J. Delpuech, Inorg. Chem., 1996, 35, 586;
(c) H. Kurosaki, R. K. Sharma, S. Aoki, T. Inoue,
Y. Okamoto, Y. Sugiura, M. Doi, T. Ishida, M. Otsuka and
M. Goto, J. Chem. Soc., Dalton Trans., 2001, 441;
(d) H. B. Albada, F. Soulimani, B. M. Weckhuysen and
R. M. J. Liskamp, Chem. Commun., 2007, 4895;
(e) S. Bhattacharyya, A. Sarkar, S. K. Dey, G. P. Jose,
A. Mukherjee and T. K. Sengupta, Dalton Trans., 2013, 42,
11709; (f) A.-S. Felten, N. Pellegrini-Moïse, K. Selmeczi,
B. Henry and Y. Chapleur, Eur. J. Org. Chem., 2013, 5645;
(g) S. Zhu, Z. Qiu, T. Ni, X. Zhao, S. Yan, F. Xing, Y. Zhao,
Y. Bai and M. Li, Dalton Trans., 2013, 42, 10898.
Notes and references
1 (a) M. C. Linder, Biochemistry of Copper, Springer, US, 1991;
(b) E. D. Harris, Annu. Rev. Nutr., 2000, 20, 291;
(c) H.-B. Kraatz and N. Metzler-Nolte, Concepts and models
in bioinorganic chemistry, Wiley-VCH Weinheim, Germany,
2006; (d) I. Bertini, Biological inorganic chemistry: structure
and reactivity, University Science Books, 2007.
9 S. V. Luis and I. Alfonso, Acc. Chem. Res., 2014, 47, 112.
10 (a) R. Marchelli, A. Dossena, G. Casnati, G. G. Fava and
M. F. Belicchi, J. Chem. Soc., Chem. Commun., 1985, 1672;
(b) T. R. Wagler, Y. Fang and C. J. Burrows, J. Org. Chem.,
2 (a) A. C. Rosenzweig and T. V. O’Halloran, Curr. Opin.
Chem. Biol., 2000, 4, 140; (b) E. I. Solomon, P. Chen,
This journal is © The Royal Society of Chemistry 2015
Dalton Trans., 2015, 44, 12700–12710 | 12709