314
T. Ishida et al. / Tetrahedron Letters 46 (2005) 311–314
9. For reviews, see: (a) Seitz, G.; Imming, P. Chem. Rev.
mann, R.; Habich, D.; Kroll, H.-P.; Riedl, B. Bioorg. Med.
Chem. 2002, 10, 3905–3913; (b) Vedejs, E.; Kruger, A. W.;
Lee, N.; Sakata, T.; Stec, M.; Suna, E. J. Am. Chem. Soc.
2000, 122, 4602–4607; (c) Berkowitz, D. B.; Chisowa, E.;
McFadden, J. M. Tetrahedron 2001, 57, 6329; (d) Dikshit,
D. K.; Singh, S. Tetrahedron Lett. 1988, 29, 3109–3110; (e)
Evans, D. A.; Sidebottom, P. J. J. Chem. Soc., Chem.
Commun. 1978, 753–754.
1992, 92, 1227–1260; (b) West, R.; Niu, J. In Nonbenzenoid
Aromatics; Snyder, J. P., Ed.; Academic: New York, 1969;
pp 311–346; (c) Schmidt, A. H. Synthesis 1980, 961–
994.
10. For recent examples see: (a) Shinada, T.; Nakagawa, Y.;
Hayashi, K.; Corzo, G.; Nakajima, T.; Ohfune, Y. Amino
Acids 2003, 24, 293–302; (b) Childers, W. E., Jr.; Abou-
Gharbia, M. A.; Moyer, J. A.; Zaleska, M. M. Drugs
Future 2002, 27, 633–638; (c) Sato, K.; Seio, K.; Sekine,
M. J. Am. Chem. Soc. 2002, 124, 12715–127124.
16. Shinada, T.; Hayashi, K.; Hayashi, T.; Yoshida, Y.;
Horikawa, M.; Shimamoto, K.; Shigeri, Y.; Yumoto, N.;
Ohfune, Y. Org. Lett. 1999, 1, 1663–1666. An alternative
approach for sq-Gly, see: Campbell, E. F.; Park, A. K.;
Kinney, W. A.; Fengl, R. W.; Liebeskind, L. S. J. Org.
Chem. 1995, 60, 1470–1472.
17. Similar examples in monoanion enolates, see: (a) Seebach,
D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624–1654; (b)
Shimamoto, K.; Ohfune, Y. Synlett 1993, 919–920.
18. Fraser, R. R.; Mansour, T. S. J. Org. Chem. 1984, 49,
3443–3444.
19. Similar results were observed in the deprotonation experi-
ments of sterically less hindered Boc-L-Phe methyl ester.
(LDA: d-incorporation 33%, racemization ratio 86%;
LTMP: d-incorporation 44%, racemization ratio 89%).
These facts indicated that the equilibrium was not
influenced by the steric demand.
11. For recent examples, see: (a) Block, M. A. B.; Khan, A.;
Hecht, S. J. Org. Chem. 2004, 69, 184–187; (b) Bueschel,
M.; Ajayaghosh, A.; Arunkumar, E.; Daub, J. Org. Lett.
2003, 5, 2975–2978; (c) Pham, W.; Weissleder, R.; Tung,
C.-H. Tetrahedron Lett. 2003, 44, 3975–3978; (d) Jiao,
G.-S.; Loudet, A.; Lee, H. B.; Kalinin, S.; Johansson,
L.B.-A.; Burgess, K. Tetrahedron 2003, 59, 3109–3116.
12. For recent examples, see: (a) Carranza, J.; Brennan, C.;
Sletten, J.; Vangdal, B.; Rillema, P.; Lloret, F.; Julve, M.
New J. Chem. 2003, 27, 1775–1783; (b) Modec, B.;
Brencic, J. V.; Burkholder, E. M.; Zubieta, J. Dalton
Trans. 2003, 4618–4625; (c) Dolbecq, A.; Mialane, P.;
Lisnard, L.; Marrot, J.; Secheresse, F. Chem. Eur. J. 2003,
9, 2914–2920; (d) Yang, C.-H.; Chuo, C.-M.; Lee, G.-H.;
Wang, C.-C. Inorg. Chem. Commun. 2003, 6, 135–140;
(e) For reviews, see:Hall, L. A.; Williams, D. J. Adv. Inorg.
Chem. 2001, 52, 249–291; (f) Aime, S.; Botta, M.; Fasano,
M.; Geninatti Crich, S.; Terreno, E. Coord. Chem. Rev.
1999, 185–186, 321–333.
20. Melting points (dec, recrystallized from H2O–MeOH) and
1
1H NMR data of 2a–h in DMSO-d6 2a: 220–221°C; H
NMR (300MHz) d 8.39 (br s, 3H), 7.27 (m, 5H), 4.25 (br
s, 1H), 3.26 (dd, J = 13.0, 4.8Hz, 1H), 3.13 (dd, J = 13.0,
1
4.8Hz, 1H); 2b: 230–231°C; H NMR (400MHz) d 9.27
13. For recent examples, see: (a) Trost, B. M.; Thiel, O. R.;
Tsui, H.-C. J. Am. Chem. Soc. 2003, 125, 13155–13164; (b)
Buchynskyy, A.; Kempin, U.; Vogel, S.; Hennig, L.;
Findeisen, M.; Muller, D.; Giesa, S.; Knoll, H.; Welzel, P.
Eur. J. Org. Chem. 2002, 7, 1149–1162; (c) Pena-Cabrera,
E.; Liebeskind, L. S. J. Org. Chem. 2002, 67, 1689–1691;
For reviews, see: (d) Clausen, C.; Wartchow, R.; Butens-
chon, H. Eur. J. Org. Chem. 2001, 93–113; (e) Liu, H.;
Tomooka, C. S.; Xu, S. L.; Yerxa, B. R.; Sullivan, R. W.;
Xiong, Y.; Moore, H. W. Org. Synth. 1999, 76, 189–198;
(f) Ohno, M.; Yamamoto, Y.; Eguchi, S. Synlett 1998,
1167–1174; (g) Moore, H. W.; Yerxa, B. R. Chemtracts:
Org. Chem. 1992, 5, 273–313.
14. For recent examples, see: (a) Saksena, R.; Chernyak, A.;
Poirot, E.; Kovac, P. Methods Enzymol. 2003, 362, 140–
159; (b) Porter, J. R.; Archibald, S. C.; Childs, K.;
Critchley, D.; Head, J. C.; Linsley, J. M.; Parton, T. A. H.;
Robinson, M. K.; Shock, A.; Taylor, R. J.; Warrellow, G.
J.; Alexander, R. P.; Langham, B. Bioorg. Med. Chem.
Lett. 2002, 12, 1051–1054; (c) Bergh, A.; Magnusson,
B.-G; Ohlsson, J.; Wellmar, U.; Nilsson, U. J. Glycocon-
jugate J. 2001, 18, 615–621.
(br s, 1H), 8.14 (br s, 3H), 6.99 (d, J = 8.5Hz, 2H), 6.63 (d,
J = 8.5Hz, 2H), 4.18 (br s, 1H), 3.13 (dd, J = 13.4, 8.8Hz,
1H), 2.94 (dd, J = 13.4, 5.6Hz, 1H); 2c: 231–232°C; 1H
NMR (300MHz) d 8.21 (br s, 3H), 4.21 (br s, 1H), 1.40 (d,
J = 6.6Hz, 3H); 2d: 213–214°C; 1H NMR (300MHz) d
8.07 (br s, 3H), 4.06 (dd, J = 9.5, 5.7Hz, 1H), 1.89–1.49
(m, 3H), 0.86 (d, J = 6.0Hz, 6H); 2e:21 200–201°C; 1H
NMR (400MHz) d 8.79 (br s, 3H), 4.57 (m, 5/8H), 4.49
(m, 3/8H), 2.08 (m, 3/8H), 1.95 (m, 5/8H), 1.83–1.54 (m,
2H), 1.48 (d, J = 6.8Hz, 9/8H), 1.47–1.41 (m, 30/8H), 1.38
1
(t, J = 7.3Hz, 9/8H); 2f: 198–199°C; H NMR (300MHz)
d 8.05 (br s, 3H), 5.67 (ddt, J = 17.2, 10.1, 7.0Hz, 1H),
5.06 (d, J = 17.0Hz, 1H), 5.00 (d, J = 10.1Hz, 1H), 4.07
(br t, J = 6.0Hz, 1H), 2.66–2.38 (m, 2H); 2g: 199–200°C;
1H NMR (400MHz) d 8.12 (br s, 3H), 3.89 (m, 1H), 2,14
(octet, J = 6.8Hz, 1H), 0.93 (d, J = 6.84Hz, 3H), 0.89 (d,
1
J = 6.84Hz, 3H); 2h: 219–220°C; H NMR (400MHz) d
9.27 (br s, 1H), 8.67 (br s, 1H), 4.44 (br s, 1H), 3.3–3.1 (m,
2H), 1.85–2.20 (m, 4 H).
21. The compound 2e (4-((1R,2S)- and (1S,2S)-1-amino-2-
methylbutyl)-3-hydroxycyclobut-3-ene-1,2-dione, [sq-iso-
leucine])was obtained as an inseparable 5:3 mixture of
diastereomers at the carbon attached to the amino group.
The absolute stereochemistry at C-1 and C-2 are R/S (5:3
or 3:5) and S, respectively. The integral values of the
protons were indicated as a number of observed H/8.
15. (a) Generation of dianion enolates from N-Boc amino acid
esters and their synthetic utilities have not been well
examined. Chemistry of dianion enolates from N-acyl
amino acid esters, see: Kazmaier, U.; Pahler, S.; Ender-